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The physics of granular matter is one of the big questions in science. Granular
matter serves as a prototype of collective systems far from equilibrium and
fundamental questions remain. At the same time, an understanding of granular
matter has tremendous practical importance. Among practical problems,
granular mixing and its interplay with segregation is arguably at the top of the
list in terms of impact. Granular mixing in three-dimensional systems is
complicated, as flow induces segregation by particle size or density. Several
approaches and points of view for analysis are possible in principle, ranging
from continuum to discrete. Flow and segregation in three-dimensional systems
is seemingly complicated; however, to a reasonable approximation, all of the
dynamics takes place in a thin flowing surface layer. This observation, coupled
with key experimental results, leads to a simple, compact and extensible
continuum-based dynamical systems framework applicable to time-periodic
flow in quasi-two-dimensional tumblers and three-dimensional systems (such as
spheres and cubes) rotated about one or more axes of rotation. The case of
time-periodic systems, in its simplest version, can be viewed as a mapping of a
domain into itself. The placement of periodic points can be investigated using
symmetry concepts; the character of the periodic points and associated manifolds
provides a skeleton for the flow and a template for segregation processes
occurring in the flow.
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4. Model for segregation: interpenetrating continua 790

4.1. Constitutive model for segregation 790
4.2. Collisional diffusivity 792
4.3. Computational considerations 793
4.4. Two-dimensional continuum model with segregation and diffusion 794

5. Three-dimensional continuum framework 795
6. Applications to 3dþT systems 798

6.1. Symmetries in time-periodic flows 800

6.2. Periodic point location 801
6.3. Skeleton of 3d flow 802
6.4. Three-dimensional Poincaré sections 804
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1. Introduction

The 125th anniversary issue of Science identified the flow of granular material as the
subject of one of the 125 big questions in science [1]. Granular flows are important
in many disciplines ranging from the planetary sciences to geophysics to industrial
processing. Geological features on Mars [2–4], Io (one of Jupiter’s moons) [5] and the
asteroid Eros [6] appear to be the result of granular flow. In geophysics,
avalanches and mudslides are a common natural hazard that result in costly damage
to property and loss of life [7]. In industry, the processing of ores and polymers,
pharmaceutical manufacturing and many aspects of food processing depend on
understanding, often gained after years of laborious trial and error experimentation,
of the behaviour of granular flows [8].

Granular matter, and granular flow in particular, is an example of a collective

system far from equilibrium [9–13]. Granular matter may be considered one of the

simplest examples of a complex system, that is a system composed of many indivi-

dual parts where the study of a single element, in this case a particle, and how it

interacts with another particle does not provide insight into macroscale behaviour,

such as the segregation patterns that appear in systems composed of two different

types of granular particles.
The mixing and segregation of granular matter is so pervasive in industry and

natural processes that one would think that a suitable theoretical framework would

have been developed long ago. However, in comparison with the mixing of liquids,

the flow and mixing of granular materials is poorly understood and such a frame-

work is lacking at the present time [14]. An important complicating factor is the

tendency for materials to segregate as a result of differences in particle properties,

such as density or size [15–29]. Processes intended to cause mixing of material

actually may cause granular material to completely separate or ‘demix’ because of

particle properties. It appears, however, that there is a sufficient body of experimen-

tal and computational modelling results so that a framework is emerging.

1.1. Organization

The focus of this article is a continuum framework for granular flow that can be used
to examine granular mixing and how it competes with segregation in surface-
dominated flows generated in partially filled containers rotated in one or more
directions in combinations of steady and time-varying modes. In section 1, we
consider first a few of the salient aspects of continuum descriptions before moving
into the definition of terms that serve to specify the systems covered. In terms of the
interstitial medium, we consider dry granular systems (DGSs) and liquid granular
systems (LGSs); in terms of the polydispersity of the particles themselves we consider
D-systems (where particles vary in density) and S-systems (where particles vary in
size). We next consider the containers in which the granular matter is housed, flow
regimes and modes of operation, where we define the dimensionality of the granular
flow: 2d (two-dimensional) and 3d (three-dimensional). (A brief remark about nota-
tion is warranted here. Upper case D refers to density as in D-systems and appears
also describes a medium as in DGS. Dimensionality is denoted by lower case d as in
2d, two-dimensional.) The section ends with a discussion of modelling approaches

Mixing and segregation of granular materials in tumblers 759
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and a note on what kinds of systems fall outside the scope of this review. We then
move into the common modes of segregation such as radial segregation in quasi-2d
systems and axial segregation in long rotating cylinders. All of this constitutes a long
preface to argue for the benefits of continuum models to frame and model problems
involving competition between mixing and segregation. In section 2, we cover experi-
mental results that are essential to set up the theoretical framework. We review
results for the variation of the velocity profile with depth in the flowing layer and
the dependence of the surface layer velocity on the length of the layer in 3d systems
as well as flow–wall effects. This is followed by details of the 2d continuum model
and visualization of flow structure in terms of Poincaré sections in time-periodic
flows in section 3. The presentation then focuses, in section 4, on constitutive models
for segregation, an interpenetrating continua model involving flow, diffusion and
segregation, and implementation details, followed by applications to various sys-
tems. The continuum model is extended to 3d systems in section 5, while section 6
is devoted to dynamical systems tools that serve to identify the placement of key flow
structures in 3d geometries when subjected to a succession of time-periodic actions.
The article concludes with several examples of the application of the framework and
a summary of open problems and areas for further study, such as coarsening pro-
blems in two dimensions.

1.2. Granular matter and the continuum viewpoint

Granular matter seems tailor-made for discrete viewpoint descriptions, from idea-
lized cellular automata (CA) calculations to detailed particle dynamics (PD) simula-
tions. However, as we argue, continuum descriptions are remarkably useful as well.
PD methods come close to the ideal of a first-principles bottom-up approach. The
motion of each particle is governed by Newton’s laws; the goal is to compute the
evolution of linear and angular momentum of every particle by using appropriate
contact force models; macroscopic behaviour emerges by averaging over a large
number of particles. Recent simulations are capable of handling as many particles
as an actual, albeit small-scale, experiment, 104–105 or so, and progress in this area
will undoubtedly continue. Such a degree of faithfulness comes at a price. Although
‘exact’ in principle, PD simulations require considerable thought in the choice of
contact force models and precise physical properties (Young’s modulus, restitution
coefficients, Poisson’s ratio, etc.). Thus, the result of a single simulation is as specific
as a single experiment: prediction is gained, but understanding is not assured.

At the other extreme we have continuum descriptions. There is a rich tradition of

applying continuum-like descriptions to granular flows. In fact, granular flows have

been used as the starting point of manifestly discrete problems such as traffic

flows [30]. There are, however, several obstacles for the appropriateness of using a

continuum description to describe granular flows [12]. One is the relevance of inter-

mediate scales (mesoscales) as manifested in jamming and stress chains. Nevertheless,

there is now emerging evidence that continuum-based descriptions, with constitutive

relations derived either from first-principles or supported by particle dynamics simu-

lations, may form the basis of a general expandable and coherent framework for the

description of a variety of flow phenomena of granular materials. As we demonstrate

in this article, a simple continuum description provides a relatively self-contained

760 S. W. Meier et al.
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framework, much like those in specialized branches of fluid mechanics, that allows
for the modelling of competing processes of mixing and segregation.

Two extremes, the quasi-static regime and the rapid granular flow regime, have
been studied the most. The quasi-static regime is dominated by frictional stresses,
where each particle has long enduring contacts with multiple particles [31–33]. This
regime is the subject of the well-established field of soil mechanics and has been
applied to processing problems such as hopper flows [33] and, more recently, peb-
ble-bed nuclear reactors [34]. Janssen’s analysis of pressure in a silo is an early
example of the continuum view of quasi-static granular material (see [20, 35–37]).
At the other end of the spectrum are rapid granular flows where particles only
interact through brief binary collisions much like the behaviour of molecules in
gases [31, 38, 39]. Studies in this area of ‘dilute granular gases’ have benefited
from analogies with the kinetic theory of gases [31, 38, 39]. In between the extremes
of quasi-static flows and rapid flows is a broad range of flows. In this review, we
consider situations where a portion of the granular matter flows in a fluid-like
manner [31]. In these systems, the particle number density is much higher than
that in a granular gas. Particles may have multiple simultaneous contacts, but the
collisions are short in duration, so the dynamics are closer to that observed in the
granular gas state than that of the quasi-static regime.

The continuum approach is appropriate for standard fluid mechanics because the
length scale of flows is typically much larger than the characteristic dimension of the
molecules and mean free paths [40–43]. Properties such as density, concentration and
velocity can be assigned to a point, field descriptions are appropriate, gradients can
be computed and so on. Transport properties can be calculated, often based on
statistical mechanics, and the separation of length and time scales makes it possible
to feed these parameters into continuum descriptions of flows. This area is one of the
most evolved in physics and a sophisticated mathematical machinery has been devel-
oped to deal with various specific regimes in fluid dynamics, such as slow interialess
flows, frictionless flows and so on.

The application of the continuum viewpoint to granular materials is difficult
because the relevant length scales are not immediately obvious [11, 43]. The ratio
of the system size to particle size in granular flows is much smaller than the ratio of
system size to molecular size in a typical fluid system, and for this reason the average
values of properties of granular flows are ‘lumpy’ compared to the average values of
properties of fluids [44]. However, when one considers properties that depend on
particle-particle interactions, granular flows have an advantage over fluid systems.
Molecule-molecule interactions in fluids are elastic, whereas particle-particle colli-
sions in granular flows are inelastic. Because of inelasticity, the length scale of energy
transport in granular materials does not extend beyond a few particle diameters [44],
and changes in macroscopic quantities related to energy transport then occur over
short distances. Thus, in the sense of properties due to particle-particle interactions,
granular materials may be more suited for a continuum viewpoint than actual fluids
such as gases and liquids. A possible difficulty is the presence of singularities such as
shocks, an area that is well treated in standard fluid mechanics but less so in con-
tinuum descriptions of granular flows.

Haff [44] developed an early version of a continuum description for rapid gran-
ular flows and used the framework to work out simple prototype problems.

Mixing and segregation of granular materials in tumblers 761
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The continuum viewpoint for rapid granular flows has also been derived from micro-
scopic models of individual particle collisions patterned in analogy with the kinetic
theory of gases [31, 37, 38, 45]. One important concept resulting from this analogy is
granular temperature, defined as the mean square value of the random fluctuation
velocities about the mean velocity in a granular flow [46]. It is important to note that
the granular temperature is superficially analogous to, but clearly different from, the
thermodynamic temperature. When the driving force stops for a granular system, the
granular temperature rapidly goes to zero as energy is dissipated due to friction and
inelastic collisions.

A set of Navier–Stokes-like continuum equations can be derived based on the
analogy with the kinetic theory of gases assuming that particles interact only through
binary instantaneous collisions [31, 38, 47]. This is different from standard kinetic
theory in that the energy equation accounts for dissipation. Constitutive relation-
ships for stresses range from heuristic-inspired models to those based on sophisti-
cated theory. An early constitutive relationship for the shear stress was first
determined from experiment and dimensional analysis by Bagnold [48]. The stress
due to interparticle collisions, �c, scales as �pd

2
p _�2, where �p is the density of the

particles, dp is the diameter of the particles and _� is the shear rate. This scaling has
been confirmed experimentally and computationally [38], although some details of
Bagnold’s experiment have recently been challenged [49]. In low-density granular gas
systems, the Bagnold stress dominates the total stress contribution. However,
Savage [47] points out that at higher densities with a large number of collisions,
Coulombic frictional stresses (typically associated with the quasi-static regime)
have a significant role as well. How to account for the relative contributions of
frictional and collisional stresses in the intermediate regime of granular flows has
been an active area of research [50–54]. One successful constitutive law for granular
flow is based on a visco-plastic approach in which the shear stress is proportional to
the normal stress through a friction law with rheological parameters based on experi-
ments [51, 55]. Using this relation for the internal stress in the standard Navier–
Stokes equations for a fluid, reasonable quantitative agreement can be achieved for
the velocity and flowing layer depth of a granular heap flow in a channel [51].
Another area of active interest is in continuum models of avalanching flows. A
model for thin avalanches was developed by Bouchaud et al. [56, 57]. This work
was further modified by Boutreux et al. [58, 59] to account for thick avalanches.
Recently, an order parameter method has been proposed to describe the transition
between flowing and static granular material, such as in an avalanche [60–63].

In this work, we discuss the modelling of mixing and segregation of granular
materials in rotating tumblers using a continuum dynamical systems framework built
on a few basic assumptions. The fluid-like portion of the flows considered here are
dense (but not jammed) and continuous. The continuum viewpoint used here
includes both collisional and frictional stresses, as suggested above for intermediate
regime granular flows. The primary interest is in flows in 3d geometries.

1.3. Objectives and definitions

The objective of this article is to present a summary of tools and results that lead
to a self-contained description of granular mixing and segregation processes in

762 S. W. Meier et al.
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surface-dominated flows, in particular in 3d systems. The problem can be simplified
by noting that all of the important dynamics occur in a thin, rapidly flowing surface
layer. This layer exchanges particles with a bed of particles in essentially solid body
rotation with the tumbler. (There is, in fact, creeping motion in the bed near the
interface with the flowing layer [64, 65] that we take to be negligible in comparison
with the motion in the flowing layer.) An understanding of the dynamics of the layer
(how it scales with tumbler geometry, particle size and type and rotation rate) leads
to a complete, albeit simplified, description of the system.

1.3.1. Specification of mixture. We consider two classes of mixtures of particles
(binary systems, unless indicated otherwise): S-systems, where particles vary by
size but not density; and D-systems, where particles vary by density and not size.
In practice there may be SD-systems, where particles differ in both size and den-
sity [66, 67]. Moreover, systems need not be binary (denoted as S2 or D2), consisting
of only two classes of sizes or densities, but ternary (denoted S3 and D3) or even
continuously distributed (denoted SfðSÞ and DgðDÞ). Systems may be SDfðS,DÞ, with
particles varying in both size and density according to a distribution represented
by fðS,DÞ.

1.3.2. Interstitial medium. We consider two classes of two-phase systems in the
spectrum of possible three-phase systems shown in figure 1: DGSs and LGSs.
In DGSs, the particles are surrounded by a gas such as air or are under vacuum.

Liquid

Solid

Gas

D
G

SLG
S

Particle laden gases

Gas fluidized beds

Droplet laden gases

Slurries

Bubbly flows

Suspensions
Colloids

LGS DGS

Figure 1. The types of two-phase granular systems of interest, DGSs and LGSs, in the
spectrum of possible three-phase systems: DGSs consist of particles and a gas; LGSs consist
of particles and a liquid. The particle size does not appear in this diagram, but it is crucially
important to the relevant physics. The inset illustrates the region of overlap in the dynamics of
LGSs and DGSs. The set denoted LGS represents all of the dynamical outcomes
of experiments using LGSs; likewise the set DGS represents all of the dynamical outcomes
of experiments using DGSs. The framework outlined in this article applies to cases for which
the dynamical outputs of experiments using LGSs and DGSs are virtually undistinguishable.

Mixing and segregation of granular materials in tumblers 763
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In principle, lubrication forces play a role when a fluid is present, and this would
suggest differences in the behaviour of systems when the interstitial fluid is air or a
liquid (water). In practice, however, lubrication effects only become noticeable at
length scales below the typical roughness of particles, so frictional effects dominate.
Thus, when the particle size is Oð1mmÞ or larger, the physics in DGSs depend almost
entirely on particle contacts, not on the gas surrounding the particles, unlike fluidized
beds or particle-laden gases where particles are in contact with each other only
infrequently. In LGSs the interstitial fluid is a liquid. When particles Oð1mmÞ or
larger are fully immersed in a less-dense liquid (there is no gas phase), the physics are
also dominated by particle contacts just as in DGSs, unlike slurries where the par-
ticles and liquid flow together or suspensions and colloids [68] where interparticle
contact is infrequent. Physics that apply to both LGSs and DGSs are also discussed
by Rajchenbach [69].

The Bagnold number provides a framework for determining whether the physics

of a granular flow are dominated by particle collisions or fluid properties. The

Bagnold number is defined as the ratio of stresses due to particle–particle colli-

sions [48] to stresses due to lubrication forces of the interstitial fluid [70, 71].

When the Bagnold number is large, particle collisions dominate over lubrication.
When a small amount of liquid is mixed with a DGS resulting in a three-phase

system, cohesion between particles due to surface tension becomes impor-

tant [32, 72–74]. These are commonly referred to as ‘wet’ systems and are located

in the middle region of the three-phase diagram in figure 1. ‘Wet’ systems have been

the subject of reviews by Herminghaus [32] and Mitarai and Nori [72]. The physics of

DGSs of fine powders (particle size Oð1 mmÞ or smaller) also involve cohesive forces,

in this case due to van der Waals attraction, as discussed in a review by

Castellanos [75]. In general, the physics of cohesive systems can be characterized

by the Bond number, the ratio of attractive interparticle forces to inertial forces [75].
Since LGSs and DGSs are dominated by particle contacts there is a broad region

of operating space where they have nearly identical dynamical responses, shown

schematically in the inset of figure 1 and, jumping ahead, by results, such as those

in figure 20. At this point we should mention that studies of mixing and segregation

in LGSs offer experimental advantages over DGSs in terms of being able to control

the experiment and interpret the results. Humidity, electrostatic charging of particles

and abrasion, problems that plague even the simplest experiments with DGSs, play

little or no role in LGSs. Consider further that with suitable index-matched fluids

and proper illumination one can visualize the interior of a granular bed [76] without

recourse to expensive magnetic resonance imaging (MRI) [77–81] or X-ray instru-

mentation [82]. Also, owing to the immersion of the granular material in a liquid,

cohesion forces due to moisture play no role and surface forces play less of a

role [32, 72]. Moreover, one can control the role of body forces in LGSs by means
of buoyancy. However, DGS experiments are more common because their setup

is less complicated.

1.3.3. Systems used to generate motion. Granular flows can be classified into several
canonical flow systems. The Groupement de Recherche Milieux Divisés (GDR
MiDi) proposes six basic configurations of granular flows in two categories [83].
Confined flows include plane shear, annular shear and vertical chute flows.

764 S. W. Meier et al.
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Surface flows include inclined plane flow, heap flow and flows in rotating drums.
In this review, we discuss only surface flows, primarily those in rotating drums or
tumblers, although many of the concepts described here can be extended beyond
tumbling flows.

We consider three types of systems that can be used to generate surface flows in
rotating tumblers, as shown in figure 2. Situations in which the tumbler thickness is
only a few particle diameters, such as a cylinder with a diameter much larger than its
axial thickness (figure 2(a)), are known as quasi-2d flows. This is a commonly studied
system [18, 19, 84–91] because of the ease with which the flow can be measured or
observed through a clear end wall, the simple tumbler drive mechanism and the
relatively small volume of granular material required. The dimension in the axial
direction is critical: too thin a tumbler results in ordered layering of monodisperse
granular material [92] or crystallization [22, 93]; too wide results in the 2dþ 1 case
(figure 2(b)).

Flows in 3d tumblers (where the axial dimension is the same order or larger than
the radial dimension [94]), such as long cylinders or spheres (figure 2(b)), are essen-
tially 2d when the orientation of the instantaneous axis of rotation does not change.
The flow in a 2d disc-like slice perpendicular to the axis of rotation at one axial
position is similar in character to that at other axial positions. However, these
systems need an additional spatial parameter to account for the position and varia-
tion of the 2d slices along the axis of rotation. For instance, in a spherical container,
the flow in the circular disc-like slices is similar from one slice to another, but the
radius of the slice varies with axial position. These cases are denoted 2dþ 1 to
indicate two coordinates and one parameter (or primarily 2d plus the additional
axial dimension).

When all three dimensions are required to fully describe the flow, such as
when there are two axes of rotation operated so that the orientation of the
instantaneous axis of rotation changes in time, the flow is 3d (figure 2(c)). An
example is when the axes are operated out of phase with each other (for
instance, when there is rotation about one axis followed by rotation about
the other axis).

(a) (c)(b)

Figure 2. Classification of free surface flow granular systems in rotating tumblers:
(a) quasi-2d; (b) 2dþ 1; (c) 3d.

Mixing and segregation of granular materials in tumblers 765
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1.3.4. Flow regimes. For surface flows in tumblers, the flow can be categorized as
avalanching, rolling, cataracting or centrifuging [21], although variations in the clas-
sification scheme and naming conventions have been suggested [93, 95, 96]. Which
flow regime occurs depends on the Froude number, the ratio of inertial forces to the
gravitational force, Fr ¼ !2R=g, where ! is the rotational speed of the tumbler, R is
the radius of the tumbler and g is the acceleration due to gravity [21]. Typically the
Froude number is changed by varying the tumbler radius, R, or the rotation rate, !.
However, recent work has shown that the Froude number also characterizes the flow
when g is varied [97]. The nature of various flow regimes and their dependence on the
Froude number has been documented in detail [93, 95–97].

Figure 3 shows a circular cross section orthogonal to the axis of rotation of a

tumbler operated in the four flow regimes. Figure 3(a) depicts the avalanching regime

(also referred to as slumping [96]), which corresponds to approximately Fr < 10�5 in

DGSs [97]. However, this regime has also been observed up to Fr ¼ 10�3 depending

on factors such as the fill fraction, particle friction coefficients and particle to tumbler

size ratios [96]. The avalanching regime is characterized by intermittent avalanches of

granular material at the surface. The granular material rotates as a solid body with

the tumbler until it reaches the angle of marginal stability, �m. At this angle, an

avalanche occurs until the material settles at the static angle of repose, �s. As

described earlier, avalanche flows have been studied with continuum models [56–63].

However, mixing in avalanche flows in tumblers is typically studied

computationally through the use of discrete models such as the wedge

model [98, 99] and CA [100–105].
Figure 3(b) illustrates the rolling or continuous-flow regime, which corresponds

to approximately 10�4 < Fr < 10�2 in DGSs [95–97]. This is the flow regime con-

sidered in this review. It is characterized by a thin, rapidly flowing, flat surface layer

that flows at an angle with respect to the horizontal, the dynamic angle of repose,

�d [20–22, 77, 93, 95], which is a function of particle properties including size [91] and

surface roughness [106] as well as tumbler properties such as dimensions, end-wall

effects [91, 107] and rotation rate [91, 93, 108, 109]. Particles enter this flowing layer

on the upstream end from the fixed bed, which is in solid body rotation with the

tumbler. Particles exit the layer on the downstream end of the layer, returning to the

bed of solid body rotation. As the rotation rate is increased, the free surface becomes

slightly ‘s’-shaped giving rise to what is sometimes referred to as the cascading regime

in the range of 10�3 < Fr < 10�1 for DGSs [96]. We include the cascading flow in the

d

(a) (b) (c) (d)

s

m

Figure 3. Illustration of flow regimes in tumblers: (a) avalanching; (b) rolling/continuous-
flow/cascading; (c) cataracting; (d) centrifuging.
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rolling regime category because the surface curvature is small and particles do not

lose contact with one another. As Fr increases, the curvature of the surface becomes

significant. For Fr > 10�1 but less than 1 in DGSs, the cataracting regime occurs [96].

Particles detach from the bed at the uphill side of the free surface and are thrown into

the interstitial fluid medium inside the tumbler [21, 96], as shown schematically in

figure 3(c). For Fr � 1 in DGSs, the flow is centrifuging as shown in figure 3(d). In

this regime, the granular material is centrifuged to the outer boundary of the tumbler

and it remains in solid body rotation with the tumbler.
For flow regimes in LGSs, buoyancy forces may alter the range of Froude

numbers for each flow regime. This is because the effect of the gravitational force

is proportional to the density difference between the particles and the interstitial

fluid. A Froude number for LGSs that could account for buoyancy is

!2R�p=gð�p � �fÞ, where �p is the density of the particles and �f is the density of

the interstitial fluid. However, to our knowledge, this has not been considered. Klein

and White proposed a different dimensionless parameter, G ¼ g½ð�p � �Þ=�!
3
�
1=2,

where � is the viscosity of the interstitial fluid, that incorporates fluid properties [110].

However, this number does not take into account the tumbler dimensions, which

clearly play a role. The particle size or shape and the ratio of particle size to the

tumbler dimensions also play roles in the specific Froude number for transition

between flow regimes [95, 96]. For instance, the dynamic angle of repose, the static

angle of repose and the angle of marginal stability depend on particle properties such

as roughness [106] and shape [104]. As a result, the Froude number for transition

from avalanching to rolling flow depends to some extent on size and type of parti-

cle [95, 96]. The extent to which the tumbler is filled with particles, or fill fraction,

also affects the flow transition [96].

1.3.5. Time-periodic flow. Flows may also depend on time as a parameter. One
example is a half-full time-periodically rotated quasi-2d circular cylinder. The rota-
tion rate can be expressed mathematically as !ðtÞ ¼ !ðtþ TÞ (figure 4(a)), where T is
the period. The notation for this situation is 2dþT. The 2d indicates that the system
used to generate the flow is quasi-two-dimensional, and the T indicates that the flow
is time periodic. Since the velocity in the flowing layer depends on the rotation rate,
the velocity is time periodic with period T.

(b)(a)

t tt T

Figure 4. (a) Time-periodic rotation of a quasi-2d tumbler with a circular cross section.
(b) Constant rotation of a quasi-2d tumbler with a square cross section.
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2dþT flow can also occur in a polygonal tumbler, for example a half-full quasi-
2d tumbler with a square cross-section rotated at a constant rate, ! (figure 4(b)).
Here time is introduced as a parameter through the time-periodic orientation of the
tumbler geometry. In the case of the tumbler with a square cross section, the flowing
layer length is at a minimum when the free surface of the flowing layer is parallel to a
tumbler wall (when the tumbler is in the square orientation shown in figure 5(a)). The
flowing layer length is at its maximum when the flowing layer is along the diagonal
(the tumbler is in the diamond configuration shown in figure 5(b)) [19]. As shown
later, the velocity in the flowing layer is directly proportional to the length of the

flowing layer. The flow field is then time periodic reaching a maximum every time the
flow is along the diagonal of the square, which corresponds to every one-quarter
revolution. It can also be shown that the streamlines computed for the two orienta-
tions intersect, as shown in figure 5(c), which is required for chaotic advection in
2dþT flows [88]. Clearly all non-circular tumbler geometries (ellipses, triangles,
pentagons, etc.) generate similar periodicity [111]. A combination of time-periodic
rotation and non-circular geometry is also possible.

Similar to the quasi-2d case, long circular cylinders can be rotated time periodi-
cally. This type of system is denoted by 2dþ 1þT where the ‘one’ indicates a spatial
parameter, the dimension along the axis of rotation (the transverse direction).
Another 2dþ 1þT system would be a long cylinder with a square cross section
rotated at a constant rotation rate.

When multiple axes of rotation are used, as shown in figure 6, the flow can
become 3dþT. Consider, for example, flow in a half-full spherical tumbler rotated
about two axes of rotation (orthogonal to each other intersecting at the centre of the

sphere), as shown in figure 6(a). The rotation rate for the x1-axis is given by
!1ðtÞ ¼ !1ðtþ T1Þ, where T1 is the period. The rotation rate could be sinusoidal,
saw-tooth or stepwise in time. The rotation rate for the x3-axis is !3ðtÞ ¼ !3ðtþ T3Þ

where T3 is the period. As shown in figure 6, the rotation around the x1-axis is
counterclockwise and the rotation around the x3-axis is clockwise (!1 > 0 and
!3 < 0). An example of 3dþT flow is the two-axis protocol (sometimes referred
to as the biaxial protocol [112]) in which the rotation rates on the x1- and x3-axes
are stepwise. First, the tumbler rotates about the x1-axis for a period of time. Next,
the tumbler rotates about the x3-axis for a period of time. Then the process repeats.

S

S

(a) (b)

S

(c)

S

Figure 5. Half-full square. (a) The flowing layer length is at a minimum when it is parallel to
a tumbler wall. (b) The flowing layer length is at a maximum when it is along the diagonal.
(c) The time-periodic orientation of the tumbler and flowing layer results in the intersection of
the streamlines in the flowing layer for the two different orientations.
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The flow is 3dþT when !1ðtÞ 6¼ k!3ðtÞ for all t, where k is a constant and at least

one rotation rate is time periodic while the other is constant or time periodic. If

!1ðtÞ ¼ k!3ðtÞ, then the flow is 2dþ 1 when the rotation rates are constant, and it is

2dþ 1þT when the rotation rates are time periodic. For these cases, the instanta-

neous axis of rotation is invariant with respect to the direction of gravity. Finally, the

flow can be 3d and not time periodic if !1ðtÞ 6¼ k!3ðtÞ and the rotation rate on at least

one of the axes of rotation is neither constant nor time periodic (for example, a

randomly varying rotation rate).
In 3dþT flows, the tumbler geometry can also introduce additional time

periodicity in the same way tumbler geometry affects 2dþT flows, as shown in

figures 4(b) and 5. A simple example of a 3dþT flow with a tumbler geometry

that induces time-periodicity to the flow is illustrated in figure 6(b). In this case,

there are two time scales for time periodicity, one due to the time-periodic rotation

about the axes and the other due to the rotational orientation of the tumbler.

1.3.6. The connected flowing layer. The continuum framework outlined in this arti-
cle is applicable to flows in the rolling or continuous-flow regime when the flowing
layer is connected. Two aspects are important, as shown in figure 7(a): (1) the 2d slice
or plane of cross-sectional flow; and (2) the flow surface itself. First, we restrict our
attention to containers for which the plane of cross-sectional flow is convex (spheres,
ellipsoids, cubes, double cones, etc.). A general example is illustrated in figure 7(b).
A tumbler cross section is convex when a line between any two points at the bound-
ary of the tumbler is wholly contained within the tumbler. In convex containers, the
free surface of the flowing layer will always be connected, regardless of the rotational
orientation of the tumbler. Tumblers with dimples or baffles can sometimes be
analysed using the continuum model for fill fractions that keep the free surface
connected during rotation. However, we do not consider situations where the dimple
or baffle is large enough so that the flowing layer is split, forming two or more
disconnected simultaneous flowing layers at some point during the rotation, as illu-
strated by figure 7(c). Second, we consider only tumblers in which the flow surface is
connected for all cross-sectional planes of flow. Thus, 3d concave tumblers may be
allowed depending on the orientation of the axis of rotation. For example, a dumb-
bell shape is allowed if the axis of rotation is along the long axis (figure 7(d)).
However, the case in figure 7(e) lies outside the present framework.

(a) (b)

3(t+T3) 3(t+T3) 1(t+T1)1(t+T1)

x
x

x x

xx3

2

1
3

2

1

Figure 6. (a) Time-periodic operation of a spherical tumbler on two axes, x1 and x3.
(b) Time-periodic operation of a cubical tumbler. In both (a) and (b), gravity is along x2.
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1.3.7. Coordinate systems. Two coordinate systems are needed: one to describe the
motion and rotation of the container itself and the other to describe the motion of
the granular material within the container. The coordinate system for the container is
x1, x2,x3 with rotation x ¼ ð!1,!2,!3Þ as shown in figure 6. Here !1 > 0 and !3 < 0
in keeping with the convention established for quasi-2d flows [18, 19, 86, 88]. The
coordinate system for the granular matter within the tumbler is x, y, z. Its origin is at
the centre of the free surface of the flowing layer. This position is defined as the point
halfway between the end walls in the transverse direction (parallel to the axis of
rotation) and, in the direction of flow at this transverse location, halfway between
the upstream and downstream tumbler walls, as shown in figure 8 for the example of
a cylindrical tumbler. The position vector is x ¼ ðx, y, zÞ with y pointing outwards
normal to the free surface. The velocity vector in the flowing layer is u ¼ ðux, uy, uzÞ.
The thickness of the thin lens-shaped flowing layer is �ðx, zÞ. The local depth-
averaged streamwise velocity in the flowing layer is given by �uxðx, zÞ ¼ 1=�ðx, zÞÐ 0
��ðx, zÞuxðx, y, zÞ dy. The velocity vector in the fixed bed is v ¼ ðvx, vy, vzÞ. For the

(b) (c)

Allowed Not Allowed

(d) (e)

(a)
Flow surface

Axis of
rotation

Figure 7. Two aspects of the flow are important. The 2d slice or plane of cross-sectional flow
shown in (a) must be connected. Thus, the cross section in (b) is allowed. However, if it is
disconnected by the tumbler geometry as shown in (c), the continuum framework as described
cannot be applied. In three dimensions, the application of the continuum framework depends
on the orientation of the tumbler. While the surface flow for the orientation of a concave
tumbler shown from the top in (d) is allowed, the orientation shown in (e) is not allowed.
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example of a half-full cylinder illustrated in figure 8, the x3-axis for the container
coincides with the z-axis for the granular flow and ! ¼ ð0, 0,!3Þ ¼ ð0, 0,!zÞ with
!3 ¼ !z < 0. With rotation only with respect to the z-axis, no flow occurs in the z
direction, so u ¼ ðux, uy, 0Þ. The velocity in the fixed bed is then v ¼ ðvx, vy, 0Þ. In
most cases, we consider the simplest situation, a half-full tumbler such as that shown
in figure 8. Fill fractions deviating from half full can be considered with a few caveats
that are explained later.

1.3.8. Radial segregation. S- and D-systems, both LGSs and DGSs, subject to
flow often segregate leading to results that on first viewing appear to be baffling.
Segregation occurs in free surface flows such as those on heaps and in tumblers
by the percolation of small particles through interstices between large particles
(S-systems) or due to buoyancy differences between light and heavy particles
(D-systems) [15, 113–121]. Consider segregation for S2- or D2-systems in a
quasi-2d tumbler. Small or heavy particles drift downwards in the flowing
layer displacing larger or lighter particles upwards. In the downstream portion
of the flowing layer, the particles leave the flowing layer at the interface with the
fixed bed. Since small or heavy particles have drifted to the bottom of the
flowing layer by percolation or buoyancy, they leave the flowing layer first at
positions relatively close to the midlength of the flowing layer. This traps the
small or heavy particles in the fixed bed near the middle of the tumbler. Large
or light particles that have drifted upwards in the flowing layer travel further
towards the periphery of the tumbler before entering the fixed bed. Thus, they
end up closer to the periphery of the tumbler than the small or heavy particles.
This process is amplified each time the particles pass through the flowing layer,
which leads to small or heavy particles segregating near the centre with large or
light particles near the periphery of the tumbler, as shown in figure 9(a). The
resulting radial segregation can occur quite quickly, often in one or two tumbler
rotations.

x

z

Flow

y

g

z

Figure 8. Illustration of the free surface coordinates in a cylindrical tumbler with its axis of
rotation aligned with the z direction. Material flows on the free surface in the positive x
direction when the rotation is clockwise with respect to the z-axis.
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Another example of segregation in S-systems is the ‘Brazil nut effect’ in vibrating

and shaking systems [16, 122] (named after the phenomenon where the large nuts end

up at the top of a can of mixed nuts). When a mixture of large and small particles of

the same density is shaken, the large particles rise to the top as the small particles

percolate through the void spaces between the large particles. This phenomenon and

its variations and exceptions (as density differences come to play) have generated

much interest in recent years (see, for example, [24–29, 123, 124]).
Although the radial segregation pattern in figure 9(a) is typical for S2- and

D2-systems, other segregation patterns that deviate from the classical radial core

pattern are possible. For certain particle types, size and density combinations, par-

ticle-to-tumbler size ratios, fill fractions and rotation rates, radial streaks of segre-

gated particles are observed, as shown in figure 9(b), instead of a semicircular

core [19, 66, 67, 125–128]. The reason that a particular combination of parameters

results in streaking rather than radial segregation is not completely clear, although it

appears to be a result of different streamwise velocities in the flowing layer for

different particle types. For example, if small particles flow faster than large particles,

a typical case, they outrun the large particles reaching the periphery of the tumbler

before they segregate to the bottom of the flowing layer. After they reach the fixed

bed, the larger particles catch up with them. The process is reinforced when these

particles enter the flowing layer again. For S-systems, this occurs when the tumbler is

filled just above half full [19, 126, 127], as is the case in figure 9(b). Streaking has also

been observed in half-full tumblers, a case for which a continuum model has been

proposed [125]. Analogous segregation patterns occur in the case of heap flows of

S-systems, but are related to the particle surface roughness [103, 104, 129]. ‘Sharp

segregation patterns’ in which particles segregate into two large distinct regions are

analogous to the radial core pattern in tumblers. ‘Stratification patterns’ in which

particles segregate into layers are analogous to the streak pattern in tumblers. The

sharp segregation pattern is typically observed when the large particles are as smooth

or smoother than the small particles. When the large particles are rougher than the

small particles, the stratification pattern is observed [103, 104, 129].

(a) (b)

Figure 9. (a) Radial core segregation for a S2-DGS in a 48%-full quasi-2d circular tumbler.
(b) Radial streaking segregation for an identical S2-DGS in a 58%-full quasi-2d circular
tumbler. In both cases, large clear glass particles are 1:11mm. Small black painted glass
particles are 0:35mm. The tumbler is made of acrylic and has a diameter of 200mm and a
thickness of 6mm.
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Radial segregation in SD-systems can become more complicated depending on

the relative size and density differences of the particles [66, 67, 78, 120, 130]. When

percolation and buoyancy work together (the small particles are also the heavy ones),

either a radially segregated core or radial streaks are observed, depending on the

ratio of the particle sizes [66, 67]. However, when percolation and buoyancy work in

opposite directions (the small particles are light), segregation can be diminished [66,

67, 120, 130]. In some cases, double segregation, a radial core of small particles with

a thin layer of small particles at the periphery of the tumbler, can occur. The key

factor is the ratio of the diameters and the masses of the two particle types [66].

Double segregation has also been found to occur for S-systems depending on the

particle sizes, tumbler size and particle roughness [114, 120, 131].

1.3.9. Axial segregation. In 2dþ 1 systems, particles of different sizes quickly seg-
regate radially and subsequently form axial bands [132, 133] as shown in figure 10(a).
The bands are generally rich in one particle type, but not necessarily pure. The bands
may extend through the entire fixed bed or there can be a radial core of particles of

T
im

e

10 cm

10 cm

(a)

(b)

(c)

Figure 10. Axial size segregation in long cylinders. (a) Image of an experimental run cropped
to coincide with the top view of the granular bed for a S2-LGS containing a 2:1 mixture of
0:88mm clear glass particles and 0:27mm black painted glass particles. The acrylic tumbler
has a diameter of 63:5mm and a length of 750mm. Small particles (dark) form a radial core
running along the axis with axial bands between bands of larger particles (white and gray).
(b) Space–time plot for a total of 2000 revolutions showing band dynamics including coarsen-
ing. Reprinted with permission from [143]. � 2005 American Physical Society. (c) Phenomena
such as travelling waves can also be observed in space–time plots, in this case a S2-DGS.
Reprinted with permission from [142]. � 2003 American Physical Society.
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the other particle type. Axial segregation occurs much more slowly than radial
segregation, typically in O(100) rotations of the tumbler. The formation of axial
bands is puzzling and most explanations for this phenomenon are based on differ-
ences in the angles of repose of the two different particle types or of phases of mixed
or pure particle types [133–135].

Hill and Kakalios showed that axial segregation is indeed a function of the

difference between the dynamic angles of repose of the mixed and segregated

phases [136]. The dynamic angle of repose is a function of rotation rate. When the
rotation rate is set so that the segregated phases have a lower angle of repose than

the mixed phase, axial segregation occurs. When the rotation rate is set so that the

dynamic angles of repose are equal, axial segregation does not occur. However, the
radially segregated core persists, as observed through MRI [79]. MRI measurements

also show that axial variations in particle concentration persist within the bed sug-

gesting that axial segregation is not driven exclusively by differences in the dynamic
angles of repose at the free surface. In fact, differences in the dynamic angle of repose

can result in an instability of the radially segregated core [137], perhaps related to

inertially dominated deformation of the core due to differences in momentum
between the large and small particles [138]. A proposed continuum model of axial

segregation based on concentrations of the two particle types suggests that axial
segregation is driven by concentration fluctuations, analogous to spinodal decom-

position [139].
Often, over longer time scales, O(1000) rotations, the bands coarsen as shown in

the space–time plot in figure 10(b). Under other operating conditions, bands may
form and then disintegrate or move along the axis of the cylinder as travelling

waves [140–143], as shown in figure 10(c). Aranson et al. proposed a continuum

model that describes both the early phase of segregation, such as travelling waves,
and long-term coarsening [144, 145]. Recently, band formation and coarsening has

been simulated using particle dynamics [146]. In the simulations, particle size differ-
ences alone led to axial segregation after radial segregation.

Segregation in fully 3d tumblers is only now being explored. These systems

include spherical tumblers and conical tumblers operated as either 2dþ 1, 3d or

3dþT. Band formation has been shown to occur under a variety of conditions in
spherical tumblers [147]. Processes occurring in industrial 3d tumblers are often

designed so that the granular flow is time dependent, a common case in practice,

but also the least well understood. Thus, many aspects of time-dependent mixing and
segregation of granular matter are being addressed [126, 127, 148–151].

1.4. Continuum models and discrete models

The focus of this article is a continuum framework for surface flows in tumblers, but
it is important to delineate where continuum models fit into the larger picture of
computational models. The most frequently studied surface flows in tumblers have
been in quasi-2d circular tumblers. They have been studied computationally through
both continuum-based models [18, 19, 86, 88, 111, 125, 152, 153] and through dis-
crete models. Our current understanding of these systems has evolved from the
complementary use of these two techniques [154] along with a large number of
experiments. Both modelling approaches have provided insight into the nature of
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surface flows; however, they each have certain caveats and limitations. In some cases,
continuum models are the most appropriate method of attack, while discrete models
should be used in others.

At one end of the spectrum of discrete models, one can consider CA approaches
in which simple rules govern the motion of particles between neighbouring cells of a
grid [155]. Even though CA models do not directly model the physics of particle
interaction, they have been used successfully to analyse certain aspects of granular
flows in tumblers [101, 105, 156–58] including mixing and segregation.

At the other end of the discrete model spectrum, particle dynamics [74, 159–162]
is the tool of choice in cases where particle–particle interactions such as cohesion are
important for the description of the flow [74]. In addition to cohesive particles,
particle dynamics can also be used to model the flow when other surface properties
such as roughness are important [106]. For instance, simulations of axial segregation
in 2dþ 1 cylinders (figure 10) have been developed [146, 163–167]. In this case,
particle dynamics simulations are the appropriate tools because particle properties
(in this case differences in the angle of repose due to the surface roughness of large
and small particles) dominate the flow.

When the flowing layer is not singly connected throughout operation of the
tumbler, particle dynamics simulations may also be more appropriate than conti-
nuum models. For example, systems driven by blades and paddles do not have
continuous flowing layers and, consequently, are better suited to particle dynamics
simulations [168]. Other industrial tumblers such as the double-cone mixer,
V-blender and tote blender have also been studied with particle dynamics
simulations [169–171].

Continuum models are faster computationally than particle dynamics models. In
particle dynamic simulations, processor time increases linearly with the number of
particles [172]. While only several hundred particles are needed to simulate a 2d case,
of the order of 100 times more particles may be needed to effectively model the 3d
case. If a 2d particle dynamics simulation takes 1 day, a 3d simulation could take
100 days. As computational speed increases, this method will most likely become
increasingly popular.

However, computational cost is not the only basis by which to judge the relative
merits of continuum models versus particle dynamics simulations. The choice of
simulation tool, continuum or discrete, is a function of the system of interest.
Where long-range interactions between particles and interactions of particles with
the system are important (such as an interaction with a paddle or blade), discrete
methods may be best. Where particle interactions are less important, continuum
models present a better opportunity for efficient study. If the goal is to study the
impact of system parameters such as geometry and rotational forcing on a granular
surface flow, then continuum models can provide a wealth of information.

2. Surface flow

Experiments have revealed important aspects of surface flows that can be translated
into key assumptions that feed into a continuum model. From a continuum view-
point, the flow in tumblers can be described kinematically with minimal information

Mixing and segregation of granular materials in tumblers 775



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

about the dynamics that actually create the flow. Granular systems in tumblers are
dominated by surface flows, and this represents a considerable simplification. The
primary assumption is that any flow in a tumbler operating in the rolling regime for
either DGSs or LGSs can be divided into two distinct regions: one thin, lens-like
region at the surface in which the particles flow downhill and a larger region below
the flowing layer in which the particles undergo essentially solid body rotation. All
mixing and segregation occurs in the thin flowing layer at the surface, and only very
slow rearrangements of particles occur below the flowing layer [64, 65, 173].
Segregation based on particle type can be modelled constitutively, as discussed
later. Thus, understanding the dynamics of the flowing layer leads to insight into
the dynamics of mixing and segregation for the entire system. Two key aspects of the
velocity in the flowing layer are needed for the continuum model: (1) the dependence
of the streamwise velocity on the depth in the flowing layer and (2) the dependence of
the streamwise surface velocity at the midlength of the flowing layer on the length of
the flowing layer. These two aspects are described in detail below.

2.1. Surface layer velocity: variation with depth

Consider first the dependence of the velocity with depth in the flowing layer, which
has been measured using several different techniques [77, 91]. Perhaps the most
complete measurements are those of Jain et al. using particle tracking velocimetry
(PTV) to measure the velocity profile for both DGSs and LGSs [71, 174]. They used a
quasi-2d circular tumbler filled with monodisperse spherical chrome steel particles
fully submerged in several different liquids as well as air. The study covered a range
of Froude numbers, bead sizes, fluid densities and fluid viscosities. Figure 11 shows
that, regardless of interstitial fluid, there is an approximately linear variation of
streamwise velocity with depth resulting in an approximately constant shear
rate in the upper three-quarters of the flowing layer. Near the bottom of the
flowing layer, the velocity profile deviates from a linear profile, approaching zero
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Figure 11. Left: Streamwise velocity variation with depth at x¼ 0 for 27 cases, both DGSs
and LGSs. Velocity is normalized by the velocity at the free surface, usurf. Right: Normalized
number density profiles scaled by Ntheory ¼ A=d2p, the number of particles of diameter, dp that
could fit in a square bin of area A for square packing. Results for three Froude numbers
(from 3:9� 10�5 to 4:0� 10�4) and interstitial fluids including air, water and glycerine–water
mixtures. Reprinted with permission from [71]. � 2004 Cambridge University Press.

776 S. W. Meier et al.



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

logarithmically near the fixed bed, regardless of the interstitial fluid. We note that in
the case of heap flows and inclined plane flows, in which the length of the flowing
layer is not constrained like it is in a tumbler, the velocity profile follows non-linear
Bagnold scaling with depth [51, 55, 83]. The linear scaling in the case of a tumbler
seems to be a result of the constraint on the length of the flowing layer by the tumbler
geometry.

The scaled number density for a variety of DGSs and LGSs at varying Froude

numbers is approximately constant except in the upper one-third of the layer, as

shown in figure 11. The surprising similarity in the dynamics of DGSs and LGSs

indicates that the physics of the flow is not strongly altered by the interstitial fluid,
even though the Bagnold number is 100 times larger for DGSs than LGSs [71]. Thus,

the overlap region between the two systems shown schematically in the inset of

figure 1 is quite large in the case of tumbled systems.

2.2. Surface layer velocity: variation with flowing layer length

The second aspect of the surface layer velocity involves the dependence of the velocity
in the flowing layer on the tumbler geometry. To examine this, the streamwise surface
velocity at the midlength of the flowing layer (x¼ 0), usurf, was measured for several 3d
tumblers [175] including the traditional cylindrical tumbler geometry, a double cone
tumbler and a spherical tumbler [175], shown schematically on the left-hand side of
figure 12. This amounts to carrying out experiments at several tumbler radii simulta-
neously. Each slice along the axial coordinate has a different flowing layer length 2L.

Figure 12 shows that usurf depends directly on the local flowing layer length for

each tumbler cross section. In the cylinder, usurf is constant with axial position with the

exception of regions a few particle diameters away from the end wall, where there is a

slight increase in velocity to compensate for slow flow regions due to frictional contact
at the end wall [94]. This is different from heap flow in channels where the side-wall

boundary flow thickness continually grows along the length of the channel resulting in

the maximum velocity at its centre [51, 55]. In contrast, in rotating cylinders, the end-

wall boundary flow is continuously reset at the beginning and end of the flowing layer
as particles enter and exit it, localizing the impact of friction at the end walls and

resulting in a nearly uniform surface velocity along most of the axial length of the

cylinder when the axial length of the cylindrical tumbler is larger than the flowing

layer length [94].
In a double cone, usurf is at a maximum at the centre (z¼ 0) where the radius is

largest, and decreases linearly towards the ends as the tumbler cross-sectional radius

decreases. In a sphere, usurf is a maximum at the centre of the sphere and decreases

non-linearly toward the poles of the sphere. End-wall effects are not observed for

these geometries, because the areas of the end walls are negligible.
The surface velocities can be plotted as a function of L for all three tumbler

geometries, as shown in figure 13, including several different radii of cylindrical

tumblers. (The range of values of the streamwise velocity for particular values of

L reflects the high-velocity regions near the end walls in cylindrical tumblers.) The

streamwise surface velocity, usurf, is directly proportional to the half-length of the

flowing layer, L. This result is consistent with dimensional arguments based on
experiments in quasi-2d cylindrical tumblers [176].
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3. Continuum model

3.1. Cross-sectional flow: 2d continuum model

Consider a quasi-2d circular tumbler or a slice of a wholly 2d flow in a 3d
geometry, such as a section in a sphere or a cone, as shown in figure 14.
Flow is in the positive x direction. The mass balance in the flowing layer is
given by

@ð��ðxÞÞ

@t
þ
@ð� �uxðxÞ�ðxÞÞ

@x
¼ �bvyðx, � �ðxÞÞ: ð1Þ

The right-hand side accounts for particles entering or leaving the element through
the lower surface of the flowing layer from the fixed bed with velocity vyðx, � �ðxÞÞ.
(Particles do not enter or leave through the top surface, so the normal velocity at the
free surface is zero.) Assuming that the bulk density in the flowing layer, �, and the
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Figure 12. Surface velocity profiles for 2dþ 1 DGS systems in 3d tumblers. Top: cylinder;
middle: double cone; bottom: sphere. The rotation rate of all tumblers is 2.0 RPM. The
maximum diameter of the tumblers is 136–140mm. The tumblers are half-filled with
1:07� 0:04mm black basalt glass particles. Reprinted with permission from [175]. � 2006
Cambridge University Press.
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bulk density in the fixed bed of solid body rotation, �b, are similar and that the flow
is pseudo-steady state, equation (1) becomes

@ð �uxðxÞ�ðxÞÞ

@x
¼ vyðx, � �ðxÞÞ: ð2Þ

C

H
y

x

R

d
g

L

z

Figure 14. 2d circular tumbler of radius R rotated about its centre, C, at rotation rate, !z,
where !z < 0 for clockwise rotation as shown. The vertical position of the free surface relative
to the axis of rotation is H. The distance between the centre of flowing layer and tumbler wall
is L. The thickness of the flowing layer is �(x).
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Figure 13. The surface velocity at x¼ 0, usurf, is a linear function of L (half the flowing layer
length) for all three tumbler geometries in figure 12 at the same rotation rate (2.0 RPM) for the
same particle size (1:07� 0:04mm black basalt glass particles). ^, half-full double cone; �,
half-full sphere; œ, half-full cylinder; �, 25%-full cylinder with correction for the solid body
rotation contribution to surface velocity. Reprinted with permission from [175]. � 2006
Cambridge University Press.
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We consider a circular tumbler, but the above equations and assumptions can be
applied to any convex tumbler owing to the pseudo-steady state assumption: that is,

the flow instantaneously adjusts to any changes in the length of the flowing layer. In

figure 14, C is at the centroid of the tumbler, which in this case also corresponds to

the axis of rotation and is parallel to the z-axis. The tumbler is oriented so that the

x-axis is horizontal and the gravity vector is at angle �d (the dynamic angle of repose)

with respect to the y-axis. The position of the free surface with respect to the axis of

rotation is H, which is negative if the tumbler is less than half full. The distance from

the midlength of the free surface to the tumbler wall is L � R. The thickness of the

flowing layer is given by �(x).
Two-dimensional solid body rotation in the fixed bed, v, is given by

v ¼ ð�!zðHþ yÞ,!zxÞ, ð3Þ

where !z < 0 so that the rotation is clockwise around the z-axis. Equation (2) can
now be expressed as

@ð �uxðxÞ�ðxÞÞ

@x
¼ !zx: ð4Þ

Equation (4) can be integrated with appropriate boundary conditions for the
mass flux in the flowing layer determined from the geometry of the container.

The streamwise velocity component, ux, at the boundary between the flowing layer

and the bed of solid body rotation equals the x-component of solid body rotation.

(In utilizing this condition, the creeping velocity in the bed of solid body

rotation [64, 65] is neglected.) As shown in figure 11 (see also [71]) and verified

elsewhere [174, 177, 178], the dependence of the streamwise velocity on depth in

the flowing layer is approximately linear. For the purposes of the model, we assume

that the shear rate is constant, rather than depending on streamwise position

ð _� 6¼ _�ðxÞÞ (see [90, 153]). This assumption for the shear rate is one of several possible

assumptions that can be made, as discussed below. So in the flowing layer,

0 � y � ��ðxÞ, the streamwise velocity at y ¼ ��ðxÞ equals the x-component of

solid body rotation given by equation (3) and then increases linearly with shear

rate _� to a maximum at the free surface, y¼ 0. This is given by

uxðx, yÞ ¼ _�ð�ðxÞ þ yÞ � !zðHþ yÞ: ð5Þ

Using the depth-averaged streamwise velocity, �uxðxÞ ¼ ð1=�ðxÞÞ
Ð 0
��ðxÞuxðx, yÞ dy,

the boundary condition is based on the mass flux at x ¼ �L

�uxð�LÞ�ð�LÞ ¼
_�ð�ð�LÞÞ2

2
� !z H�

�ð�LÞ

2

� �
�ð�LÞ: ð6Þ

Now �(x) can be found by integrating equation (4) with the above boundary
condition (6), so that

�ðxÞ ¼
!z

_� þ !z

H�
!2
z

ð _� þ !zÞ
2
H2
�

!z

_� þ !z

ðL2
� x2Þ þ ð�ð�LÞÞ2 �

2!z

_� þ !z

H�ð�LÞ

" #1=2

:

ð7Þ
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From experiments [71, 175], _�=j!zj � Oð100Þ. Furthermore, H2=L2
	 _�=j!zj

where the flow is in the rolling or continuous-flow regime. The flowing layer is
very thin ð�ðxÞ2=L2

Þ 	 1 and from experiments it is observed that �ð�LÞ ¼ 0.
Thus, the equation for the flowing layer thickness, �(x), simplifies to

�ðxÞ ¼

ffiffiffiffiffiffiffiffi
j!zj

_�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

p
ð8Þ

since �ðxÞ > 0. The y-component of the velocity field in the flowing layer, uyðx, yÞ,
can be found from continuity within the layer, r 
 u ¼ 0, so that

uyðx, yÞ ¼ �
!zxy

�ðxÞ
: ð9Þ

Thus, a set of simple assumptions yields the shape of the flowing layer and the
normal velocity. Furthermore, equations (5), (8) and (9) provide a complete descrip-
tion of the flow. ForH¼ 0 (half-full tumbler), the second term on the right-hand side
in equation (5) is typically neglected because _�=j!zj � Oð100Þ. This results in a dis-
continuity at y ¼ ��ðxÞ, the effect of which is inconsequential. Finally, since this is a
kinematical description of the flow, the acceleration of gravity and its orientation
with respect to the free surface do not play a role in the expressions for the velocity
and flowing layer thickness.

3.2. Assumptions

The development of the continuum framework depends on two basic assumptions.
The first is that the streamwise velocity varies linearly with depth in the flowing layer,
so that the shear rate, _�, is constant with y at each streamwise position x. The second
assumption relates to how the surface velocity varies with x. There are at least three
different options for this assumption.

(A) The surface velocity is allowed to vary along the length of the flowing layer
by assuming that the shear rate is constant, as is done here, leading to
equation (5). Makse [153] used this assumption and took shear rate as a
fitting parameter, while Khakhar et al. [90] derived the shear rate based on
an analysis involving the solution of the momentum equation. The result is a
surface velocity that has a maximum where the flowing layer thickness is
maximum. This form of the model results in �ðxÞ /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2
p

.
(B) The surface velocity is allowed to vary along the length of the flowing layer

according to a boundary value approximation [152]. This approach, coupled
with mass conservation and stress continuity at the interface between the
flowing layer and the bed of solid body rotation leads to �ðxÞ / ðL2

� x2Þ2=5.
(C) The surface velocity is assumed to be constant along the length of the flow-

ing layer [18, 19, 86]. In this situation, the shear rate must vary with stream-
wise position, because the flowing layer thickness varies. This leads to
�ðxÞ / ðL2

� x2Þ, a parabolic-shaped flowing layer.

The choice of which of the three assumptions to use is based on a balance of
computational efficiency and model realism compared with experiments. Depending
on tumbler geometry, there may be cases where the x-coordinate of a particle in the

Mixing and segregation of granular materials in tumblers 781



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

bed of solid body rotation is outside of the bounds of the flowing layer (for example,

in a half-full rotating square as it approaches the diamond configuration). In this

case, computing �(x) for jxj > L when using models derived from assumptions (A)

or (B) is problematic. Therefore, conditions must be in place in the model imple-

mentation to require that �ðxÞ ¼ 0 when a particle is in solid body rotation and

jxj > L. The model derived from assumption (C) does not require this because

�(x) is real for all x.
Assumption (A) is used here in spite of its computational drawbacks, because

measurements of the streamwise surface velocity indicate that it reaches a maximum

near the midlength of the flowing layer, and goes to zero at either streamwise end of

the flowing layer [94, 175, 176] consistent with the result when assuming that the

shear rate is constant. Assumption (B) is rarely used. However, it is important to

note that any of the three assumptions yield similar results (e.g. Poincaré sections)

when studying the overall dynamics of the flow [19, 87, 88, 90]. The determinant

factors are the basic characteristic of the container, first, and the scaling with local

flowing length, second. The details of the velocity field are unimportant in the struc-

ture of segregation patterns, Poincaré sections, etc.

3.3. Deviations from symmetric flowing layer

Assuming a constant shear rate (assumption (A)) results in a flowing layer that is
symmetric about the y-axis (�(x) is a maximum at the midlength of the flowing layer
at x¼ 0). However, in the rolling regime, the flowing layer may be skewed or asym-
metric [91, 94, 176]. A first principle model starting with the momentum balance
yields an asymmetric layer [86, 90, 179]. The shear stress in the flowing layer at the
interface with the bed of solid body rotation is [50]

�xyjy¼��ðxÞ ¼ �� d
2
p fð�Þð _�ðxÞÞ

2
� �g�ðxÞ cos�ðxÞ tan�s: ð10Þ

The first term on the right-hand side is the Bagnold stress [48] with fð�Þ ¼ c�=dp,
where c is a fitting parameter, typically having a value of c � 1:5 for 2d sys-
tems [90, 91]. The second term on the right-hand side is the Coulombic frictional
stress, where �s is the static angle of repose. �(x) is the angle between horizontal and
the boundary between the flowing layer and the fixed bed. The stress in equation (10)
is balanced on the bed side of the interface by the static frictional stress,

�xyjy¼��ðxÞ ¼ ��g�ðxÞ cos�ðxÞ tan�d, ð11Þ

where �d is the dynamic angle of repose. Using equations (10) and (11), it can be
shown that

_�ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g cos�ðxÞ sinð�d � �sÞ

cdp cos�d cos�s

s
: ð12Þ

Equation (12) makes it possible to model skewed velocity profiles where the angle
between the bed–layer interface and horizontal varies with streamwise position. For

very thin flowing layers where �ðxÞ � �d, equation (12) yields a constant shear rate,

consistent with the continuum model above. A result with similar dependence on g

and dp, _� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g sin�d=dp

p
, can also be obtained [180] simply by assuming that the
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shear rate is constant. The examples in this article are all generated using a flowing
layer that is symmetric about the midpoint of the free surface, as generated by
assumptions (A) or (C) in section 3.2.

3.4. Time-periodic flows

The equations for the continuum model were initially developed for circular tum-
blers. The streamlines in the thin flowing layer are nearly parallel to the free surface
while particle paths in the fixed bed are semicircles concentric with the tumbler wall.
When tumblers are non-circular, particle paths are harder to predict and this is where
continuum models can provide substantial insight.

Changes in the length of the flowing layer in polygonal tumblers are easily
handled by means of a pseudo-steady-state approximation that incorporates the
instantaneous value for the half-length of the flowing layer, L(t), in equation (8)
for the flowing layer thickness. Thus, the flowing layer thickness varies with the
tumbler orientation leading to a variation in the velocity in the flowing layer.

Complications arise when the distance between the centroid of the tumbler and
the free surface, H, changes with time owing to the tumbler geometry so that
H ¼ HðtÞ. An example is a 25%-full square tumbler as shown in figure 15. For a
square with side length S, H ¼ �0:25S when the flowing layer is parallel to a wall as
shown in figure 15(a). However, when the square is in the diamond configuration,
H ¼ �0:21S as shown in figure 15(b). Owing to the shape of the tumbler, H periodi-
cally varies with time, HðtÞ ¼ Hðtþ TÞ. This is handled by using the pseudo-steady-
state approximation that the flow instantaneously adjusts. The change inH is applied
to the y-position of the points in the flowing layer. This may be thought of as adding
dH=dt to uy in equation (9) (see [111]).

In half-full even-sided tumblers, the y-axis at the origin of the coordinate system
in the flowing layer (located at the streamwise midlength of the free surface) always
extends through the centroid of the tumbler. This is not always the case in even-sided

tumblers at fill fractions that deviate from half full and in odd-sided tumblers of all
fill fractions. For example, in the situation shown in figure 15, not only is H changing
in time, but the midpoint of the free surface of the flowing layer is also moving with
respect to the centroid of the tumbler.

This issue is more clearly illustrated in a triangular tumbler shown in figure 16.
When the triangle is pointing up (figure 16(a)) or pointing down (figure 16(c), the
y-axis of the coordinate system extends through the centroid of the tumbler.
However, when the triangle is pointing to the side (figure 16(b)), the y-axis of the
coordinate system, which is located at the midpoint of the flowing layer, is displaced
in the streamwise direction from the centroid by a distance c. Although dH=dt is
included in the velocity equations to account for height changes, dc=dt is not because
it is typically small compared with the magnitude of the streamwise velocity, ux
(see [111]). Figure 16 also illustrates that for half-full odd-sided tumblers, the dis-
tance between the surface of the flow and the axis of rotation can change with
tumbler orientation.

Time-periodic flow for the case of periodic modulation of the rotation rate,
!ðtÞ ¼ !ðtþ TÞ, is also readily handled by means of a pseudo-steady-state approx-
imation in the flow equations. As illustrated in figure 17, the thickness of the flowing

Mixing and segregation of granular materials in tumblers 783
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layer �(x) depends on the rotation rate, !, according to equation (8). As the rotation

rate increases, the flowing layer thickness increases. The velocity in the flowing layer

also increases according to equations (5) and (9). Thus, a time-periodic modulation

of the rotation rate results in time periodicity of the flow.

3.5. 2dQT flows

3.5.1. Poincaré sections and time-periodic flow. Consider as an example steady
flow in a quasi-2d circular tumbler (figure 2(a)) and time-periodic flow in a quasi-
2d square tumbler (figure 4(b)). The character of these flows can be studied through
the use of computational Poincaré sections [181]. The computational Poincaré
sections for half-full tumblers generated in figures 18(a) and (c) are produced in

L

Centroid

x

y L

x

y
Lc

x

y

(a) (b) (c)

Figure 16. Half-full triangle at different orientations. Note that both the vertical orientation
of the surface and the horizontal orientation of the origin of the coordinate system change
with respect to the axis of rotation as the tumbler orientation changes.

S

(a) (b)

S

H=−0.25S H=−0.21S

Centroid

x

y

x

y

Figure 15. In a 25%-full square tumbler, H is a function of time depending on tumbler
orientation. (a) When the square is in the upright configuration with the flowing layer parallel
to a wall with length S,H ¼ �0:25S. (b) When the square is in the diamond configuration with
the flowing layer parallel to the diagonal, H ¼ �0:21S.
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the following way. Points are initially seeded in the filled portion of the tumbler
domain and these points are advected according to the 2d continuum model
(equations (5), (8) and (9)) as the tumbler rotates clockwise.

For example, in the square tumbler (figure 18(c)), points are placed along one of
the diagonals and advected according to the 2d continuum model. The positions of
points are plotted every one-quarter revolution as the tumbler rotates clockwise. This
periodicity is a result of the tumbler returning to the same rotational orientation
every one-quarter revolution. In the case of the circle the flow is steady, so the
period can be chosen arbitrarily. In figure 18(a), the points are plotted each one-
half revolution.

The Poincaré section for the square (figure 18(c)) has more complicated features
than those of the circle (figure 18(a)). In the square, the points do not travel on closed
semicircular streamlines as they do for the circular tumbler. Instead, some points are
confined to islands, while others are advected over much of the tumbler. There are
also points that return exactly to their initial position after some number of periods,
referred to as periodic points. The existence of periodic points is guaranteed by
Brouwer’s fixed point theorem [183, 184]. All that is required is that the flow occurs
in a singly connected domain, such as in the circle or the square. If the system is
viewed at two arbitrary times (t1 and t2), then at least one point viewed at t1 is in
exactly the same position at t2 (see [185]).

Let us state a few definitions concerning periodic points. For details the reader
should consult the book by Ottino [181]. Consider the flow as a mapping /ðxÞ, where
a particle in position xn gets mapped to xnþ1, i.e. xnþ1 ¼ /ðxnÞ. A particle beginning
at position p is said to be of a period n if p ¼ /n

ðpÞ. In 2d preserving maps, these
periodic points may be classified as elliptic, where the nearby linearized flow is a
rotation, or hyperbolic, where the nearby linearized flow is contraction in one direc-
tion and stretching in the other. Elliptic points are the subject of the Kolmogorov–
Arnold–Moser (KAM) theorem [186–188]. Ellipse-shaped rings such as those shown
along the diagonals of the tumbler in figure 18(c), are characteristic of elliptic points.

x

y
max

z z

min

t t T

Figure 17. For 2dþT flow generated from time-periodic modulation of quasi-2d circular
tumbler, the flowing layer thickness and velocity profile depend on the instantaneous value of
the time-periodic rotation rate as given in equations (5), (8) and (9).
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These rings are typically referred to as KAM regions or islands; KAM regions are

invariant and serve as barriers to mixing. Material inside the rings cannot cross to the

outside and material outside cannot cross to the inside [181, 189, 190]. Material in an

island also undergoes a twist [181, 191]. In general, larger islands are characterized by

lower-order elliptic points [185]. On the other hand, hyperbolic points characterize

chaotic flow and are generally good for mixing.

3.5.2. Segregation patterns. Figure 18 shows a striking similarity between the pat-
terns in the computationally derived Poincaré sections (figures 18(a) and (c)) and the
segregation patterns from S2-DGS experiments in quasi-2d tumblers (figures 18(b)
and (d)). In the case of the half-full circular tumbler (figure 18(b)), the small black
particles have segregated from the large particles to form a semicircular radial core as
the tumbler rotates clockwise. In the half-full square tumbler rotating clockwise

(a) (b )

(c) (d)

Figure 18. Application of continuum model to 2d systems. Rotation is clockwise in all
figures. (a) Computational Poincaré section for a 2d circular tumbler. (b) S2-DGS segregation
experiment in a quasi-2d circular tumbler. (c) Computational Poincaré section in a 2d square
tumbler. (d) S2-DGS segregation experiment in a quasi-2d square tumbler. In both experi-
ments, the large particles are 1.21 mm clear glass particles and the small particles are 0.29 mm
painted black glass particles. Both tumblers are made of acrylic. The circular tumbler has a
diameter of 222mm. The square tumbler has a side length of 157mm. Both tumblers are 6mm
thick. See online version for colour. Part (d) Reprinted with permission from [182]. � 2006
American Physical Society.
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(figure 18(d)), the small black particles have segregated to form two lobes that stretch
from the centre of the tumbler toward the bottom corners. These two lobes overlap
approximately with the islands in the computational Poincaré section (figure 18(b)).
This similarity between the location of the islands of the computational Poincaré
section and the lobes of the experimental segregation patterns is particularly
interesting because the continuum model used to produce the Poincaré sections
(equations (5), (8) and (9)) contains no information about segregation. Although
time-periodic flows generally enhance the mixing of monodisperse species by means
of chaotic advection, particles varying in size or density still segregate into patterns
clearly influenced by the underlying kinematics of the flow illustrated by the compu-
tational Poincaré sections.

The similarity between the pattern of the Poincaré section and the segregation
pattern holds for a variety of tumbler shapes and particle concentrations [182].
Figure 19 shows the example of a half-full quasi-2d tumbler with a pentagonal
cross section. The Poincaré section (figure 19(a)) shows complicated dynamics.
There are two inner islands surrounded by five outer islands. At low small-particle
concentration for a S2-DGS (figure 19(b)), the small particles form a segregation
pattern with two lobes that correspond to the two islands along the diagonals in the
Poincaré section. When the small-particle concentration is increased (figure 19(c)),
the small particles form a segregation pattern that is similar to the outline of the five
island region. By using three different sizes of particles (figure 19(d)), it is possible to
capture the shape of the inner two island regions and the outer five island regions
at the same time.

3.5.3. Applications to LGSs. Segregation patterns in LGSs comprise lobes that
coincide with the location of islands in computational Poincaré sections in the
same manner as for DGSs [192]. Figure 20 shows a case where the time periodicity
arises from a time-periodic modulation of the rotation rate of a quasi-2d circular
tumbler. The rotation rate is modulated so that it reaches a maximum four times per
revolution resulting in a lobed segregation pattern. The similarity of segregation
patterns between the LGS (figure 20(a)) and the DGS (figure 20(b)) demonstrate
the overlap in the physics of these two systems. Once again, the lobes of the segrega-
tion patterns shown in figures 20(a) and (b) correspond to the location of the islands
in the computational Poincaré section shown in figure 20(c).

3.5.4. Relating segregation patterns and Poincaré sections. The underlying reason
that computational Poincaré sections and segregation experiments capture the same
patterns can be traced back to an analysis of the periodic points [182]. Islands (such
as the two small islands along the diagonals in the lower half in figure 21(a)) are
characterized by elliptic points. (There is a third island in the flowing layer that is
much more difficult to see.) On the other hand, chaotic regions are characterized by
hyperbolic points. In this case, a hyperbolic point is located in the lower half of the
figure halfway between the two islands (figure 21(b)). There are also two hyperbolic
points along the horizontal midline of the tumbler.

The character of the periodic points can be determined by computing the
Jacobian, J, of the linearization of the mapping, /n

ðxÞ [182]. In 2d systems, there
are two eigenvalues, �1 and �2, and corresponding eigenvectors. The eigenvalues are
found from the condition detðJÞ ¼ 1 so �1�2 ¼ 1. If �1, 2 ¼ A� iB where B 6¼ 0, then
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the point is elliptic. If �1, 2 are both real (imaginary component is equal to zero), not
equal to 1, and are reciprocals of each other, then the point is hyperbolic. The
eigenvalue with a modulus greater than 1 has an eigenvector that corresponds to
the direction of stretching. The eigenvalue with a modulus less than one has an
eigenvector that corresponds to the direction of compression. If �1, 2 ¼ �1, the
point is said to be parabolic. Parabolic points correspond to steady shear flow
such as that seen in quasi-2d circular tumblers rotated at a constant rate of rotation.
Their influence can be seen in the Poincaré section shown in figure 18(a). In the half-
full quasi-2d circular tumbler, there is a curve of parabolic points radially
located approximately at half the radius of the tumbler. The shearing influence of

(c)(a) (b)

Figure 20. Segregation patterns of a S2-system that develops in quasi-2d circular tumblers
that are more than half-full and undergoing periodic forcing (varying the tumbler rotational
speed at four times per tumbler rotation). Rotation of the tumbler is clockwise. (a) S2-LGS,
0:8mm clear glass particles and 0:3mm painted black glass particles. (b) S2-DGS, 1:2mm
painted blue glass particles and 0:8mm white zirconium particles. (c) Poincaré section. In (a)
and (b), the acrylic tumbler is 178mm in diameter and 6:4mm thick. Reprinted with permis-
sion from [192]. � 2005 Cambridge University Press.

(a) (b) (c) (d)

Figure 19. Experimental segregation patterns capture the patterns and location of islands
in the computational Poincaré section in a half-full quasi-2d pentagonal tumbler.
(a) Computational Poincaré section. (b) Segregation result for S2-DGS with 10% by weight
small particles. (c) Segregation result for S2-DGS with 30% by weight small particles.
(d) Three-phase segregation result for S3-DGS (70% by weight large, 25% by weight medium
and 5% by weight small particles). In (b) and (c) the large particles are 1:21mm clear glass and
the small particles are 0:29mm painted black glass. In (d) the large particles are 1:19mm
painted black glass, the medium particles are 0:75mm painted yellow glass and the small
particles are 0:35mm painted purple glass. The acrylic pentagonal tumbler has a side length
of 141mm and a thickness of 6mm. Reprinted with permission from [182]. � 2006 American
Physical Society.
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the parabolic points results in the points radially closer to the centre of the tumbler
extending clockwise after each time period of flow with respect to a vertical line
through the centre. This behaviour is seen in the curve of red points near the radial
position at about half the radius of the tumbler in figure 18(a). This curve is gener-
ated by the gradual movement of the point each time period in the clockwise direc-
tion. The curve of points radially further away but still close to this half-way point
(shown in green) is extending counterclockwise relative to a vertical midline.

The similarities between the computational Poincaré sections and the experimen-
tal segregation patterns can be explained through the dynamics associated with the
hyperbolic points [182]. The eigenvector that corresponds to the direction of stretch-
ing is tangent to the unstable manifold, while the eigenvector that corresponds to the
direction of compression is tangent to the stable manifold. The manifold can be
traced by seeding many points around each of the hyperbolic points [193] and

(a)

(c) (d)

E E

E

H

H

H

(b)

Figure 21. Square tumbler 75% full. (a) Poincaré section. (b) Poincaré section with periodic
points labelled as either elliptic (E) or hyperbolic (H). Hyperbolic points have corresponding
eigenvectors. (c) Quasi-2d S2-DGS experiment with eigenvectors associated with hyperbolic
points overlaid on the segregation pattern. Large particles are 1:21mm clear glass. Small
particles are 0:29mm painted black glass. The acrylic square tumbler has a side length of
157mm and a thickness of 6mm. Note that the arms made up of smaller particles in the
experiments (darker regions) correspond to the invariant regions in the Poincaré section.
(d) Unstable manifold tracing from each of the hyperbolic points overlaid on the experimental
results. Adapted with permission from [182]. � 2006 American Physical Society.
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advecting them according to the continuum model (equations (5), (8) and (9)). As
can be seen in figure 21(d), unstable manifolds trace out the same shape as the
segregation pattern.

Thus, the lobes of the segregation pattern form due to the interplay of the
tendency of bidisperse granular material to segregate based on size or density differ-
ences and the underlying dynamics of the time-periodic flow. Once particles segregate

in the flowing layer, they flow as if they were monodisperse. The particles that are
higher in the flowing layer (for S-systems, the large particles) are subject to the
dynamics of the upper portion of the flowing layer, which corresponds to the out-
ermost regions of the Poincaré section. The particles in the bottom of the flowing
layer (for S-systems, the small particles) are subject to the dynamics of the lower
portion of the flowing layer, which corresponds to the innermost regions of the
Poincaré section. While the segregated small (or heavy) particles appear to mimic
the islands characterized by elliptic points in Poincaré sections, they are also influ-

enced by the dynamics of the chaotic regions characterized by hyperbolic points. The
segregated lobes tend to stretch along the direction of the stretching eigenvectors
associated with the hyperbolic points. Tracing of the unstable manifold (to which the
stretching eigenvector is tangent) reveals the overall curvature of the segregation
pattern as shown in figure 21(d).

4. Model for segregation: interpenetrating continua

Flows of polydisperse granular materials can be modelled using the continuum
model presented in section 3.1 by incorporating a constitutive equation that includes
a drift velocity for segregation and by assuming the different materials behave as
interpenetrating continua [18, 111]. A few authors have proposed other models of
segregation. Hsiau and Hunt [194] and Khakhar et al. [195] studied segregation of
bidisperse granular materials using kinetic theory models for binary mixtures [196,
197]. Other models include those by Savage and Lun [113], which uses a percolation
mechanism for size segregation, and by Dolgunin et al. [115, 116], who propose a
phenomenological model for size and density segregation that depends on particle
concentration and granular temperature.

4.1. Constitutive model for segregation

Consider a D2-system of particles with the same diameter, dp, but two different
densities or masses, mh and ml (h for heavy, l for light) in a shear-like motion, as
in the case of a flowing layer in a tumbler (figure 3(b)). In the simplest heuristic
picture, one can imagine that buoyant forces act on each type of particle, so drift
velocities relative to the mean flow are generated in the flowing layer. Light particles
rise to the top of the flowing layer and heavy particles sink towards the bottom. The
derivation developed here for a D-system follows Khakhar et al. [18], but the deriva-
tion is analogous for an S-system. The assumption is that large particles in an
S-system behave in a similar manner to light particles in a D-system; small particles
in an S-system behave like heavy particles in a D-system. Systems where size and
density differences are both at play [66, 67] are difficult to handle because of
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the interplay between the buoyancy and percolation, so these systems are not
considered here.

The velocity field in the flowing layer is dependent on the local concentration of
heavy particles, f, where f ¼ 1=V

Ð
Vnh dV, with nh being the number of particles of

mass mh, and V being the size of a local control volume associated with a given

position in the flowing layer such that OðVÞ � Oðd3pÞ. The notation is the same as
before except now velocities corresponding to each particle type are denoted with a
subscript h or l for heavy or light. The dependence on position through the variables
x and y is the same as with monodisperse particles, but now there is an additional
parameter f (which is shown after a semicolon, because it is a parameter associated

with the position (x, y), not an independent variable). The velocity of points that
represent particles of each type is given by

uhðx, y; f Þ ¼ uðx, yÞ þ qhð f Þ ð13Þ

and

ulðx, y; f Þ ¼ uðx, yÞ þ qlð f Þ, ð14Þ

where qh and ql are the segregation drift velocities, and u is given by equations (5)
and (9). By describing the motion in this way, we are referring to particles in a
continuum mechanics sense, much like fluid particles in the Lagrangian approach
to fluid flow. In the continuum model, a point that which represents a particle of a
given type (heavy or light) is simply advected according to the continuum model.
There are no particle–particle interactions. Noting that the average velocity is
u ¼ fuh þ ð1� f Þul, then

ql ¼ �qh
f

1� f
: ð15Þ

The simplest assumption is that the drift velocity of the heavy particles is propor-
tional to the buoyancy force arising from the different masses of the particles and
proportional to g [18, 115, 116], so that

qh ¼ Cg
mh �ml

mh

� �
ð1� f Þ, ð16Þ

where C is a coefficient. The dependence on ð1� f Þ reflects the drift velocity for
heavy particles being dependent on the local concentration of light particles. Using
equation (15), the drift velocity of the particles with mass ml is

ql ¼ �Cg
mh �ml

mh

� �
f: ð17Þ

The rate of change of volume of the phase space occupied by the two species is equal,

r 
 uh ¼ r 
 ul ¼ �Cg
mh �ml

mh

� �

 rf: ð18Þ

Thus, r 
 uh 6¼ 0 and r 
 ul 6¼ 0 until a steady state is reached where the particles are
segregated into regions of the same type, f¼ 1 or f¼ 0 (so that rf ¼ 0, except at
discontinuities between segregated regions). Once this has occurred, particles travel
with the mean flow, but there is no segregation velocity.
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This constitutive model for segregation is readily incorporated into the conti-

nuum model of section 3.1. As particles move according to the continuum model,

they also drift upwards or downwards in the flowing layer owing to buoyancy effects

according to the constitutive segregation model. The advantage of using a continuum

model over a particle dynamics simulation is that not all of the particles need to be

simulated. Furthermore, particle–particle interactions need not be considered.

Rather, tracer points are seeded in the phase space and advected according to the

equations of motion. Although the motions of particles are not determined from

force balances, particle interactions by means of the local buoyancy are calculated

for all points in the flowing layer at each timestep. The strength of the continuum

model together with the constitutive segregation model is demonstrated in figure 22

for 2dþT flows in polygonal tumblers. The segregation pattern of the density dif-

ference driven model matches that of S2-DGS experiments at a high level of detail

including the shape and number of lobes, as well as the curvature and asymmetry of

the lobes. This comparison illustrates the qualitative similarities between density

segregation, which is driven by buoyancy, and size segregation, which is driven by

percolation.
This constitutive model is quite possibly the simplest, although variations are

possible. One option is to make the drift velocities vary with a power of f. While the

transient behaviour may vary with changes in the power of f, previous work indicates

that the long-time behaviour is nearly the same [111].

4.2. Collisional diffusivity

The importance of collisional diffusivity can be characterized in terms of the
Péclet number, Pe, the ratio of the diffusive time scale to the advective time
scale [18, 88]. The advective time scale comes from the characteristic length scale
in the streamwise direction, L, divided by the characteristic streamwise velocity, the

Experiment

Computational
Model

Figure 22. Examples of results from the computational segregation model compared with
S2-DGS experiments. The small black painted glass particles have a diameter of 0:30mm. The
large clear glass particles have a diameter of 0:85mm. The triangular tumbler has a side length
of 118mm. The square tumblers have a side length of 157mm. The pentagon has a side length
of 68mm. All tumblers are made of acrylic and are 6mm thick. Posterboard inserts were used
to produce the triangular and pentagonal cross sections. Figures not to scale. Adapted with
permission from [111]. � 2006 American Physical Society.
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depthwise-averaged streamwise velocity at the midlength �uxð0Þ: L= �uxð0Þ. The
diffusive time scale in the direction normal to the flowing layer is ð�ð0ÞÞ2=Dcoll, so

Pey ¼
ð�ð0ÞÞ2 �uxð0Þ

LDcoll

: ð19Þ

The diffusive time scale in the streamwise direction is the time it takes a particle to
move diffusively half the length of the flowing layer L2=Dcoll, so

Pex ¼
L �uxð0Þ

Dcoll

: ð20Þ

The length scale for diffusive transport in the transverse direction for 3d tumblers is
similar to that for streamwise transport, so Pez ¼ Pex. Typically Pex � Pey (see [18]).

Returning to the segregation model, the Cg term in (16) and (17) is a character-

istic segregation velocity that is related to collisional diffusivity. The segregation

velocity in the streamwise direction, Cgx, is small compared with the advective

velocity, so it can be neglected. The component normal to the streamwise direction

can be expressed in terms of the collisional diffusivity of the particles, Dcoll, as

Cgy ¼ �
4Dcoll

dp
, ð21Þ

where the prefactor of ‘4’ comes from a study using Monte Carlo simulations and
particle dynamics simulations that showed that the dimensionless segregation
velocity varies inversely with granular temperature [18, 19]. With this relationship,
parameters including the prefactor in equation (21) were chosen so that the compu-
tational result using the continuum model matched experimental observations [18].
A scaling relation for collisional diffusivity from particle dynamics computations
for shear flow [198] that has been confirmed experimentally [199] can be used
for the collisional diffusivity:

Dcoll ¼ gðvÞd2p _�, ð22Þ

where the prefactor g(v) depends on the solids volume fraction, v. For particles
similar to the type considered here with a typical solids volume fraction, v¼ 0.55,
gðvÞ � 0:025 [88]. Alternatively, the Péclet number can be estimated or specified, and
equation (19) used to provide an estimate for Dcoll.

4.3. Computational considerations

The constitutive model for segregation depends on the number fraction, f, which can
be determined in several different ways. The bin method uses the fraction of the heavy
particles within a cell or bin of a pre-defined grid. In the case of figure 23(a) where
dark particles are heavy, f ¼ 5=7. Of course, a weakness of this method is that the
spatial resolution is constrained by the size of the bin. With the depth of the flowing
layer being only O(10) particles thick, it is difficult to obtain a meaningful estimate of
the dependence of f on y. Furthermore, segregation does not depend on all of the
particles surrounding an individual particle. For a heavy particle, segregation
depends on how many light particles are below it; for a light particle, segregation
depends on how many heavy particles are above it.
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The local concentration method avoids these problems by considering particles

within a given radius of an individual particle, either just above or just below it [111].

For a light particle, such as that labelled by a � at its centre in the upper portion of

figure 23(b), only the concentration above that point is considered. In the illustra-

tion, f ¼ 2=3. For a heavy particle, the concentration below that point is considered,

as shown in the lower portion of figure 23(b), f ¼ 1=3.
In the 3d case, the local concentration method can be computationally

intensive. However, by taking advantage of the continuum viewpoint, only par-

ticles of one type need to be tracked by means of a bitwise operator that

indicates whether a particle drifts or not. In the case of the upper portion of

figure 23(c) there is at least one heavy particle within a prescribed radius below

the labelled heavy particle, so the particle will not drift downwards. If a heavy

particle has no other heavy particles as near neighbours below, as illustrated in

the lower portion of figure 23(c), it drifts downwards. Particles that are not

being tracked, in this example light particles, are not included, reducing compu-

tational time.

4.4. Two-dimensional continuum model with segregation and diffusion

The full 2d interpenetrating continua model for mixing and segregation of two types
of particles (heavy and light) can be expressed using equations (13) and (14) with
equations (16), (17) and (21) to yield the streamwise velocity for both heavy (ux, h)
and light (ux, l) particles

ux, h ¼ ux, l ¼ _�ð�ðxÞ þ yÞ � !zðHþ yÞ þ kx, ð23Þ

(a) (b) (c)

Don't drift

Drift

No Drift

Figure 23. Illustration of the different methods of calculating f. (a) Bin method; (b) local
concentration method; (c) bitwise operator method which is particularly useful in 3d applica-
tions. In all cases, f is computed at each timestep for points that represent particles in the
flowing layer.
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the normal velocity for heavy particles

uy, h ¼ �
!zxy

�ðxÞ
� 4

Dcoll

dp

mh �ml

mh

� �
ð1� f Þ þ ky ð24Þ

and the normal velocity for light particles

uy, l ¼ �
!zxy

�ðxÞ
þ 4

Dcoll

dp

mh �ml

mh

� �
fþ ky: ð25Þ

Here kx and ky are white noise terms related to the collisional diffusivity, Dcoll, that
represent random diffusion in the x and y directions inherent in the flow, regardless
of segregation drift velocities. The integrals of kx and ky over time � t give sets of
Gaussian random numbers with variance 2Dcoll� t (see [88]). Diffusion in the stream-
wise direction kx is typically neglected.

5. Three-dimensional continuum framework

The extension of the 2d model to 3dþT systems is conceptually straightforward.
Consider rotations about the two axes (x1 and x3), x ¼ ð!1, 0,!3Þ, as shown in
figure 6 for !1 having a positive value and !3 having a negative value. There is a
coordinate system x, y, z for the granular matter within the tumbler with unit vector,
k, along the instantaneous axis of rotation which is parallel to the z-axis, such that
the rotation is clockwise when viewed along the z-axis (as is the case in figure 8)
defined with respect to x1, x2, x3 as

k ¼
ð�!1, 0, �!3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
1 þ !

2
3

q :
ð26Þ

The surface flow is assumed to adjust instantly so that the streamwise direction of
the flow is orthogonal to k but at the dynamic angle of repose, �d, with respect to the

plane of axes x1 and x3, so the unit vector in the flow direction is

i ¼
�!3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
1 þ !

2
3

q cos�d, � sin �d,
!1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
1 þ !

2
3

q cos�d

0
B@

1
CA: ð27Þ

The unit vector that is normal to the flowing free surface is

j ¼
�!3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2
1 þ !

2
3

q sin �d, cos�d,
!1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2
1 þ !

2
3

q sin �d

0
B@

1
CA: ð28Þ

Note that if �d ¼ 0, then j ¼ ð0, 1, 0Þ ( j points along the x2 direction). If !1 ¼ 0
and !3 < 0, then k ¼ ð0, 0, 1Þ and i ¼ ð1, 0, 0Þ, which is the situation for the 2d flow

shown in figure 14. Finally, if, instead, !3 ¼ 0 and !1 > 0, then k ¼ ð�1, 0, 0Þ and

i ¼ ð0, 0, 1Þ. This results in the �x1 direction as the instantaneous axis of rotation and

the x3 direction as the streamwise direction.
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Thus, the x direction is the instantaneous streamwise direction, the instantaneous

transverse direction is along the z direction (parallel to the instantaneous axis of

rotation) and the y direction is normal to the instantaneous flowing surface. The

relationship between the coordinate axis system x1, x2, x3 for rotation (with rotation

about the x1-axis and the x3-axis, and gravity parallel to the x2-axis) and the local

instantaneous coordinate system x, y, z for the flow (with instantaneous rotation

about the z-axis) is shown in figure 24.
Two-dimensional slices can be taken normal to the transverse z direction as

shown in figure 25(a) for the example of a spherical tumbler. Thus, we consider

circular slices shown in figure 25(b) that are identical to those for a 2d circular

tumbler, figure 14, except that the flowing layer thickness � is a function of z in

addition to x, and the flowing layer length L is a function of z instead of being

constant.
The circular slice of the spherical tumbler has a radius rðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � z2
p

where R

is the radius of the sphere and the origin of the coordinates is at the centre of

the sphere. Here C is on the instantaneous axis of rotation, which is parallel

to the transverse direction in the spherical tumbler in figure 25(a). The position of

the free surface with respect to the instantaneous axis of rotation is H. Of course, the

above approach and assumptions can be applied to any tumbler geometry and fill

fraction where the flowing layer is connected throughout operation. Convex tumbler

geometries (such as spheres and cubes) always meet this requirement.
Since the velocity at the free surface in each cross section orthogonal to k is

proportional to the local length of the flowing layer in the slice and because there is

negligible transverse flow between slices [175], the mass balance in a differentially

small element of the thin flowing layer for a slice in a 3d tumbler is identical to that

for the 2d case (assuming that the bulk density in the bed of solid body rotation and

the flowing layer are equal and that the pseudo-steady-state approximation holds).

Thus,

@ð �uxðx, zÞ�ðx, zÞÞ

@x
¼ vyðx, � �ðx, zÞ, zÞÞ, ð29Þ

x1–x3 plane

d

g
x2

xz

x

x3

x–z plane

y

Flow

Flow

3

1 1

Horizontal plane

Flowing surface

z

Figure 24. In the two-axis flows illustrated in figure 6, the free surface x–z plane is at the
dynamic angle of repose, �d with respect to the horizontal x1–x3 plane. Gravity g is orthogonal
to the horizontal x1–x3 plane.
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where the instantaneous coordinate system x, y, z is aligned with unit vectors i, j, k.
Following a similar procedure to that for the 2d continuum model, it can be

shown that

uxðx, y, zÞ ¼ _�ð�ðx, zÞ þ yÞ � !zðHþ yÞ ð30Þ

and

uyðx, y, zÞ ¼ �
!zxy

�ðx, zÞ
, ð31Þ

where

�ðx, zÞ ¼

ffiffiffiffiffiffiffiffi
j!zj

_�

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLðzÞÞ2 � x2

q
ð32Þ

and L(z) is the distance between the midlength of the free surface and the tumbler
wall in the direction of flow at the transverse position z.

Equations (30), (31) and (32) are identical to the 2d case (equations (5), (9)

and (8)) except for the dependence on the position along the z direction. Again,

the acceleration of gravity and its orientation with respect to the free surface do

not play an explicit role in the model. Gravity drives the flow, but its orientation is of

no consequence to the kinematical description of the velocity field.
Situations with rotation about all three axes can also be considered. In this case,

the unit vector along the instantaneous axis of rotation would have a non-zero y

component. However, at any instant in time, the free surface immediately adjusts so

its normal vector is at angle �d to the vertical direction x2, and the transverse direc-

tion is horizontal and in the plane of flow. The transverse direction of the flow in the

layer is not necessarily parallel to the instantaneous axis of rotation, because it can

tilt out of the plane of the flow. Thus, the transverse direction is the horizontal

projection of the instantaneous axis of rotation to the free surface. This is equivalent

Transverse, z 

Axis of
rotation S

tream
w

ise, x

(a) (b)

d g

x
yH

C
r (z)

L(z)

z

z

Figure 25. (a) 3d spherical tumbler of radius R with the transverse direction, z, parallel to the
instantaneous axis of rotation, which is orthogonal to the streamwise direction x. (b) 2d slices
can be taken along z. Each slice of radius r(z) is rotated about C, which is on the instantaneous
axis of rotation, at rotation rate !z, where !z < 0 for clockwise rotation as shown. Vertical
position of free surface relative to the axis of rotation is H. The distance between the centre of
flowing layer and the tumbler wall is L(z). The thickness of the flowing layer is �ðx, zÞ.
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to equation (26) for the definition of the unit vector along the axis of rotation in
which the vertical component of rotation !2 is omitted. The streamwise direction x is
orthogonal to z and at the dynamic angle of repose, �d with respect to the horizontal
x1–x3 plane according to equation (27). The outward normal y is found from the
coordinate transformation of x2 due to the dynamic angle of repose according to
equation (28).

An example of this case is the rocking/rotating spherical tumbler studied by
Gilchrist and Ottino [147]. In this case, a primary axis of rotation is rocked time
periodically in and out of the horizontal x1–x3 plane. The flow was modelled in each
2d slice (as illustrated in figure 25) using assumption (C) of section 3.2, but similar
results are obtained using the model adopted here (assumption (A) of section 3.2). In
the model, L is a function of time due to the continual reorientation of the surface
flow with respect to the tumbler axes.

The success of the continuum model is evident from comparison with experi-
ments using two particle sizes shown in figure 26. In the case of a spherical tumbler
rotated about a single axis with no rocking, a single segregated band forms at the
transverse centre of the sphere orthogonal to the axis of rotation, analogous to the
axial banding phenomenon in 2dþ 1 cylindrical tumblers (figure 10). The appearance
of the band as viewed from the bottom of the spherical tumbler is shown in part A of
figure 26 (left-hand side). The resulting space–time plot of a narrow vertical strip of
the image is also shown in part A of figure 26 (right-hand side). With no rocking the
band stays centred in the tumbler over time. When the axis of rotation is rocked,
time-periodic flow is induced resulting in the wavy space–time plot of the band of
small particles, as shown in part B of figure 26.

The particle trajectories based on a continuum model of monodisperse parti-
cles with the same forcing as in part C of figure 26 show a remarkably similar
instantaneous pattern and space–time plot by simply shading the trajectories near
the centre portion of the tumbler. Similar results are obtained for a situation in
which the rocking frequency and rotating frequency are not identical. In this case,
spots of small particles appear twice per rotation in the experiments (part D of
figure 26), which correspond to light areas in the continuum model (part E of
figure 26).

One more study should be mentioned. Elperin and Vikhansky proposed a model
for flow in an ellipsoidal tumbler that is rotated about a main axis that is also
wobbled [200]. They showed that rotation of a 3d tumbler about its non-principal
axis can enhance transport in the axial or spanwise direction. They later used level-
set methods to define the free surface of flowing granular material for various 3d
tumblers [201]. The rocking of a rotating cylindrical tumbler has also been studied
experimentally [148–151, 202], but clearly much more work is needed in this area.

6. Applications to 3dQT systems

Here we consider the discrete two-axis motion of a 3d tumbler. This system is of
particular interest because it serves to illustrate several analysis techniques that are
useful to reveal the relationship between the dynamics of the underlying flow and
segregation. As shown for the 2dþT case, the computational Poincaré sections
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capture the time-periodic dynamics of the underlying flow. Poincaré sections
are useful in revealing the structure of the flow, including where there is
mixing and where there is not. The analysis has an analogue in 3dþT systems.
However, there are few available theoretical tools and methods for analysing
these systems, one of the few analyses being the flow skeleton concepts
of MacKay [203] (see also [204]). The 2dþT systems benefit from ease of
experimental visualization. In a 2d case, the effects of time-periodic rotation rates,
tumbler geometry and segregation can be viewed easily. However, in the 3d case,
the effects of these factors are not easily captured owing to the opacity of the
granular material and the challenge in representing 3d systems in a 2d image.
Even in fluids, where the interior of a 3d system is more easily viewed, the dynamics
are much more complicated than for a 2d system; the flow around periodic points is
considerably richer and there is no agreement as to the best way to visualize the
internal structure of the flows (the steady 3d case is relatively simple; the 3dþT case
is not) [204, 205].

A

B

C

D

E

Figure 26. S2-DGS experimental space–time plots (A, B and D) and computational conti-
nuum model space–time plots (C and E) of the bottom view of the spherical tumbler. Left:
Static pictures of a bottom view of the spherical tumbler. Right: Space–time plots from
experiment and continuum model. A vertical line of pixels (represented by the horizontal
line in static images on left) are taken from each frame of consecutive pictures in time captured
by a video camera to create the space–time plots. A, Experimental, no rocking.
B, Experimental, ratio of rocking frequency to rotating frequency of 1.0 with rocking angle
of �45�. C, Computational, same parameters as B. Centre trajectories are shaded for clarity.
D, Experimental, ratio of rocking frequency to rotating frequency of 0.842 with rocking angle
of �45�. E, Computational, similar parameters as D. Ratio of rocking frequency to rotating
frequency of 0.957. Rocking angle of �45�. In the experiments, the large painted black glass
particles are 2:0mm in diameter and the small fluorescent particles are 0:8mm in diameter.
The acrylic spherical tumbler has a diameter of 136mm. Reprinted with permission from [147].
� 2003 American Physical Society.
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The set of rotations and resulting flows shown in figure 27 lends itself to a

symmetries analysis technique based on map algebra, which was first developed by

Franjione and Ottino [191] in the early 1990s for 2d and spatially periodic fluid flows.

With the exception of work by Galaktionov et al. [206] it has not been applied to

mixing in 3d flows. Nevertheless further application and development of this tech-

nique can greatly aid in the understanding of 3d systems. In particular, it can reveal

the placement of invariant regions of the flow and simplify considerably the numer-

ical procedures needed to locate unmixed regions.

6.1. Symmetries in time-periodic flows

Map algebra techniques are ideally suited to the analysis of mixing generated by a
series of piecewise actions. For illustration purposes, consider the two-axis motion of
a three-dimensional tumbler geometry such as a sphere (figure 27) rotated discon-
tinuously about each of the axes [112]. Consistent with the assumptions made earlier,
there is no flow in the transverse direction allowing analysis of flow in 2d slices along
the axis of rotation. In the case of a sphere, each cross-sectional slice is a circle
(as shown in figure 27).

Specific details of the flow are not required for the application of the symmetries

technique. Only the basic behaviour of the motion is needed, so the analysis

applies to both the two-axis spherical tumbler and the two-axis cubical tumbler.

t

x

t

z

UW

y

xz

U

x

z

W

x

z

WU
Flow in each cross-section is independent

Trajectory of a particle

3d view

Top view

Top view of surface velocity

Figure 27. Rotation of a spherical tumbler on two independent axes of rotation. After
rotating the tumbler from horizontal to the dynamic angle of repose, there is a rotation for
a given time period about the z-axis that results in a surface flow in the positive x direction, U.
After this motion has stopped the tumbler is gently rotated in reverse by the dynamic angle of
repose to bring the surface back into the horizontal plane. Then there is a rotation for the
same time period about the x-axis resulting in a surface flow in the positive z direction, W.
Then the tumbler is gently rotated in reverse by the dynamic angle of repose to bring the
surface back into the horizontal plane. This protocol can then be repeated for the desired
number of periods. Flow in slices perpendicular to the axis of rotation are independent 2d
flows. The right portion illustrates the trajectory of a particle seeded at ð0, �0:95R, 0Þ over five
iterations of the two-axis protocol, M ¼WU. The distance of rotation on each axis is one-half
rotation.

800 S. W. Meier et al.



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

The symmetries technique is most easily explained by demonstrating its application

to a particular tumbler rotation protocol, in this case a two-axis protocol (also known
as the biaxial protocol [112]), a discrete mixing protocol where first the tumbler is

rotated about one axis for a specified angle and then rotated at the same rate about a
different axis for the same angle. In experiments, the surface always starts from

horizontal and is rotated without causing flow by the dynamic angle of repose before

applying the specified rotation. After the specified rotation, the tumbler is rotated
backwards for the dynamic angle of repose in a manner that does not result in flow to

return to horizontal before applying rotation around the other axis.
From this point on, we alter the notation for convenience to avoid carrying too

many subindices. First, x1 and x3 labelling the axes about which rotation occurs in

figure 6 are replaced with x and z as shown in figure 27. These axes remain in the
horizontal plane. The resulting surface flows are U and W, respectively, as shown in

figure 27. The first action results in flow in the layer in the positive x direction, U.
The second action results in flow in the layer in the positive z direction, W. This

alternating rotation protocol could be repeated in a time-periodic way, as indicated

in the upper left portion of figure 27. Note that the dynamic angle of repose can be
neglected if the tumbler is rotated gently from horizontal to the angle of repose

before each action and back after each action, so that the particles do not flow.
The trajectory of a particle over five periods of the two-axis protocol is shown in the

right portion of figure 27.
For the example application of the symmetries technique, action U (one-half

rotation about the z-axis) is followed by action W (one-half rotation about the

x-axis). The composition can be expressed as a map, M ¼WU. The right-hand

side of the map is read right to left. M is a representation of xnþ1 ¼ /ðxnÞ, which
is the solution to the velocity field described by the continuum model for U followed

by W mapping the point xn to xnþ1. That is:

xnþ1 ¼Mxn: ð33Þ

Periodic points of period j correspond to the solution of

p ¼M
jp: ð34Þ

In two dimensions, periodic points are elliptic (complex conjugate eigenvalues),
hyperbolic (real eigenvalues) or parabolic (eigenvalues of �1). As we shall see, 3d
flow presents far richer behaviour [207–210].

6.2. Periodic point location

An algebra of symmetries analysis reveals that the overall map M is two iterations of
a fundamental map Mf. This fundamental map has a time-reversal symmetry
(described in Appendix A) that indicates period-1 points lie in the x ¼ �z plane or
in pairs reflected across it. We are interested in period-1 points because the lowest-
order points tend to be associated with the largest islands and therefore have the
most influence on the region of flow near them [185].

As an illustration, consider the application of the two-axis protocol to a spherical

tumbler illustrated in figure 27. (A similar study of a cubical tumbler is described in
Appendix B.) Insight into the nature of the period-1 points in a spherical tumbler can

Mixing and segregation of granular materials in tumblers 801
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be obtained from an understanding of the period-1 points in a 2d circular tumbler.
For a protocol where the period is arbitrarily set at one-half revolution and
_�¼ 200|w|, there is a curve of parabolic period-1 points, shown in figure 28(a), at
r ¼ 0:54R where R is the radius of the circular tumbler. For rotation of a sphere by
one-half revolution about one axis, each cross-sectional slice of the sphere will have a
corresponding curve of period-1 points. Combining these slices results in a surface of
period-1 points. For a two-axis protocol, there are two of these surfaces that are
orthogonal to each other, as shown in figure 28(b). The blue surface comprises
period-1 points due to rotation about the z-axis. The yellow surface illustrates the
surface of period-1 points due to rotation about the x-axis. Thus, for a two-axis
protocolM ¼WU with each action being a rotation of one-half revolution, curves of
period-1 points will be at the intersections of these surfaces [112]. To be precise, these
periodic points are period-12 points because they return to their initial location after
one-half iteration of the map, M. However, for simplicity, we refer to these periodic
points as period-1 points, because they are also periodic after one iteration of the
map, M.

6.3. Skeleton of 3d flow

The skeleton of a steady 3d flow or a 3dþT flow resides in the identification of fixed
points and cycles. There is significantly more richness in the structures in 3d flows
than in 2d and 2dþT flows. The 2d flows cannot be chaotic but 2dþT can be. In 3d,
chaos is possible in steady flows, and it often occurs in 3dþT flows. For examples of
3d chaotic fluid flows the reader may consult [204, 205]. Much has been written
about the 3d case, although often without the restriction that the flow be volume
preserving. An introduction to this topic can be found in the book by Hirsch and

(a) (b)

x z

y

Figure 28. Periodic point curves and surfaces. (a) Curve of period-1 parabolic points in a
rotating 2d circular tumbler. The curve is continuous in both the bed of solid body rotation
and the flowing layer. The discontinuity in the curve at the boundary of the bed of solid body
rotation and the flowing layer is a result of computational challenges near the boundary.
(b) Schematic of surfaces of period-1 parabolic points in rotating sphere. The blue surface
is due to U. The yellow surface is due to W. These surfaces are only illustrations, not based on
calculations like in (a). The surface in the flowing layer is not shown. This type of analysis was
first made by Gilchrist [112]. See online version for colour.
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Smale [207], in the series of books by Abraham and Shaw [211] and in the book by
Ottino [181]. A classification of critical points in 3d systems is given in the article
by Chong et al. [209] and an analysis of the skeleton of 3d systems is given by
MacKay [203]. The 3dþT case is richer. Mathematically, the problem of 3dþT
granular flows is identical to that of 3dþT fluid flows, although there are a few limit
cases, such as a vanishingly thin layer in the case of granular flows, that bring about
interesting mathematical consequences that have not been studied yet.

In what follows we present an example analysis of a flow in a spherical tumbler to
give the reader a sense of the structure of chaotic 3dþT granular flows. The first step
in the analysis involves the location of periodic points. Once a period-n point is
located, its eigenvalues can be calculated from the Jacobian matrix of the linearized
mapping of the flow around the point [206, 212, 213]. In the case of the two-axis
protocol, the linearized mapping M is used to compute the Jacobian matrix, J, in an
analogous manner to that for the 2d Jacobian matrix [182]. The eigenvalues are then
calculated from detðJ� �IÞ ¼ 0, where I is the identity matrix. When the flow is 3d
and volume preserving, there are three eigenvalues such that �1�2�3 ¼ 1. Note that in
the 2dþ 1 case there is no flow in the transverse direction, so there will only be two
non-zero eigenvalues such that �1�2 ¼ 1.

With the eigenvalues and the Jacobian matrix in hand, the corresponding eigen-
vectors can be found. If one of the eigenvalues is equal to �1, then its eigenvector
points in the direction that characterizes shear flow and towards another periodic
point. This eigenvector is tangent to a curve of periodic points much like the curve of
parabolic points at r ¼ 0:54R in the 2d steady flow of a circular tumbler rotated at a
constant rate. For the discrete two-axis protocol in a sphere of radius R¼ 0.5, the
curve of period-1 points, each with one eigenvalue equal to one, are shown in
figure 29. The positions of these period-1 points are located numerically as follows.
A cube-shaped grid of points (three points on each edge separated by a small spa-
cing) is seeded in the vicinity of an expected location of a period-1 point. These
points are advected using the continuum model for one period of flow. A new grid
with a smaller spacing is then constructed around the point that moved the smallest
distance from its initial position, and the process continues until the point that
returns to its initial position within some tolerance is identified. Using this approach,
curves of period-1 points in the x¼ z plane and the x ¼ �z plane are found, as
predicted by the intersection of the surfaces in figure 28 and by the symmetries
analysis technique. These curves are continuous and connected through the flowing
layer (although it is computationally difficult to calculate points near the interface of
the flowing layer and the fixed bed). Individual points represent the resolution of the
calculations.

If the other two eigenvalues are complex conjugates, that is, �2, 3 ¼ A� iB where
B 6¼ 0, then the periodic point has a twist and ‘elliptic’ character. If these elliptic
points lie on a curve, they should result in a tube-like structure, the 3d analogue of
the ellipse-shaped rings in two dimensions such as the islands shown in figure 20(c).
Points that are initially seeded in this tube-like region should remain trapped in this
neighbourhood owing to the elliptic nature of the periodic points. If both eigenvalues
are real (imaginary components are zero), not equal to one and reciprocals of
each other, then the periodic point is ‘hyperbolic’ in nature. The character of the
periodic points in figure 29 is emphasized through colour. The colour depends on the
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magnitude of the imaginary part, jBj, where hyperbolic (jAj 6¼ 1, B¼ 0) and para-

bolic (jAj ¼ 1, B¼ 0) points are represented by green. Elliptic points (B 6¼ 0) are

represented by blue.

6.4. Three-dimensional Poincaré sections

Visualization in 2dþT systems is accomplished by means of Poincaré sections
[19, 87, 88]. Here the framework for 2dþT systems is expanded to a 3d stroboscopic
map. Two approaches are considered.

The first approach involves seeding points (here along the x ¼ �z plane) at a

particular radius and then plotting the location of the points after each iteration of

the map, M. Poincaré sections of curves of 19 points initially seeded at a constant

radius in the x ¼ �z plane and then advected over 500 periods of flow are shown for

the three different radii (where the radius of the spherical tumbler is R¼ 0.5) in

figure 30. All of the points in each case remain on the hemispheres of constant radius

on which they were initialized for all iterations. This is analogous to the flow occur-

ring along closed streamlines in 2d circular tumblers. In the spherical tumbler, flow in

the flowing layer occurs on closed streamlines first in the positive x direction due to U

and then in the positive z direction due to W. Thus, in the case of the two-axis sphere

rotated for the same period of time on both axes, particles travel on constant radii

hemispheres shown on the left-hand side of figure 30 that are formed by the inter-

sections of the closed streamlines in each 2d circular slice along the axis of rotation.

z 0.2

0.2

0

−0.1

−0.2

−0.3
−0.3 −0.2 −0.1 0 0.1

0.3 −0.3
−0.2

−0.1
0 0.1

0.2
0.3

x

x=z

y

x=−z

Figure 29. Period-1 points in a sphere rotated according to M ¼WU. In the model used to
generate these results _� ¼ 200j!j. The colour depends on the magnitude of jBj, where B¼ 0 is
represented by green and B 6¼ 0 is represented by blue. All of the points in the x¼ z plane, both
in the fixed bed (the lower curve) and in the flowing layer (the upper line), are hyperbolic,
B¼ 0. The period-1 points in the x ¼ �z plane are elliptic, both in the fixed bed and in the
flowing layer. Exceptions occur at the centre of the flowing layer, where the curve of period-1
points in the x ¼ �z plane intersects the curve of hyperbolic period-1 points in the x¼ z plane
and at the intersection of the two curves of period-1 points in the fixed bed. Here the period-1
points are parabolic. The magnitudes of B for the elliptic points in the bed are small compared
with the magnitudes of B for elliptic points in the flowing layer, as indicated by their lighter
blue colour. See online version for colour.
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The seeded points interact with the curves of period-1 points resulting in patterns
visible when viewing the bottom of the hemispherical Poincaré section for r ¼ 0:62R
shown on the right-hand side of figure 30. Elliptic and hyperbolic behaviours are
evident near the intersections of the hemisphere with the curves of period-1 points.
Even though the dynamics are primarily governed by the period-1 point curves,
patterns also occur in the Poincaré sections of the hemispheres that do not intersect
the period-1 point curves, as shown for r ¼ 0:25R and r ¼ 0:95R.

A second approach for visualizing the dynamics of the underlying flow is shown
in figure 31. The idea is to identify chaotic and non-chaotic regions of the flow near

3d view Bottom view

r = 0.25 R

r = 0.62 R

r = 0.95 R

x

x

x

z

z

z

Figure 30. Poincaré sections for two-axis protocol in a spherical tumbler. In the model used
to generate these results _� ¼ 200j!j. Left: 3d views show that points initially seeded to a
hemisphere stay on that hemisphere. Right: Bottom views show x ¼ �z symmetry. Top:
Points initially seeded at r ¼ 0:25R where R is the radius of the sphere. Middle: Points initially
seeded at r ¼ 0:62R. Bottom: Points initially seeded at r ¼ 0:95R. The ellipse shaped rings in
the upper right and lower left of the bottom view of the r ¼ 0:62R hemisphere correspond
to the intersections of the curve of elliptical points (shown in figure 29) in the x ¼ �z plane
with the r ¼ 0:62R hemisphere. This is analogous to the ellipse-shaped rings in the 2dþT case,
such as those shown in figure 20(c). Likewise, the hyperbolic nature of the system in the upper
left and lower right of the bottom view of the r ¼ 0:62R hemisphere reflect the curve of
hyperbolic points in the x¼ z plane interacting with points on the hemisphere. The pattern
is symmetric about the x¼ z plane and the x ¼ �z plane, as is expected from the symmetry of
the curves of period-1 points in figure 29.
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the curves of period-1 points. Points are seeded in the middle of each quadrant of the
lower half of the spherical tumbler as perpendicular square sheets. After a number of
applications ofM, only the points that have travelled a relatively small distance from
their initial location after each iteration are retained in the plot.

In the upper right portion of figure 31, tubes of trapped points circulate around
the curves of elliptic points indicating regions of poor mixing, much like the islands
associated with elliptic points in 2dþT systems. The points in the lower right portion
of figure 31 move away from the curve of hyperbolic points in the x¼ z plane. These
results are consistent with those in figure 30 for r ¼ 0:62R, where points move away
from the x¼ z plane, and ellipse-shaped rings analogous to 2d islands form along the
x ¼ �z plane.

6.5. Comparison of the 3d continuum model with experiments

The continuum model provides an alternative approach for the study of the
dynamics in a spherical tumbler undergoing the two-axis protocol. For the results
shown in figure 32, the two-axis protocol, WU, is applied with one full rotation on
each axis. The shear rate is matched to that for the comparable experiment
( _� ¼ 50j!j), so it is different from that used to obtain the computational results
shown in figures 29–31. The hemisphere of interest in figure 32 is close to the tumbler
wall (r ¼ 0:95R). While the medium in the continuum model simulation is assumed
to be monodisperse, in the experiment, two sizes of particles are used. The fluorescent
yellow (they appear green in the figure) tracer particles are 1:94� 0:11mm painted
glass particles (density of 2:3 g cm�3), while the remaining particles are
1:07� 0:04mm black basalt glass particles (density of 2:6 g cm�3). By using large
tracer particles, segregation effects keep these particles in the uppermost portion of
the flowing layer and thus on the outer most hemisphere when they are in the bed of
solid body rotation (near the tumbler wall). This counters diffusive mixing between
hemispheres that would normally occur as a result of the particles passing through
the flowing layer, so that the advective mixing on hemispheres can be readily
observed. Clearly, the continuum model simulation provides an accurate representa-
tion of the dynamics of the mixing, particularly when the simulation includes diffu-
sion. The chaotic dynamics are evident in the stretching and folding of the ‘blob’
of fluorescent tracer particles as is evident after four periods of the protocol.
Furthermore it is clear that the dynamics are restricted to hemispherical shells, as
described in the previous section.

6.6. Segregation modelling in three dimensions

The segregation pattern for a bidisperse granular material is closely related to
the underlying dynamics of the flow as described in section 3.5.4. The
constitutive model for segregation can be extended to 3d systems and applied to
both a spherical tumbler and a cubical tumbler rotated at its faces according to the
two-axis protocol M.

In what follows, the advective motion is restricted to 2d slices perpendicular to
the axis of rotation. The 3d segregation model is based on equations (23)–(25) for a
2d segregating flow consisting of two species h (heavy) and l (light). In a 3d geometry
with streamwise direction x (for the example of U), assuming that the shear rate _� is

806 S. W. Meier et al.
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constant and noting that the flowing layer thickness � depends on the position along

the transverse direction, z, the streamwise velocity of both heavy and light particles is

ux, h ¼ ux, l ¼ _�ð�ðx, zÞ þ yÞ � !zðHþ yÞ þ kx: ð35Þ

The normal velocity for heavy particles is

uy, h ¼ �
!zxy

�ðx, zÞ
� 4

Dcoll

dp

mh �ml

mh

� �
ð1� f Þ þ ky, ð36Þ

and the normal velocity for light particles is

Initial Condition

Elliptic tubes in x=−z plane

Hyperbolic behaviour in x=z plane

y

y

y

x

x

x

z

z

z

0

−0.1

−0.2

−0.2
−0.1

0
0.1

0.2 −0.2
−0.1

0
0.1

0.2

−0.1

−0.2

-0.2
-0.1

00.1
0.2

−0.2 −0.1
0 0.1

0.2

Figure 31. To visualize the dynamics of the chaotic flow, three orthogonal sheets of points
are seeded in each quadrant of the lower half of the spherical tumbler (Initial condition). The
position of a point after each of the 20 periods of M is recorded and the average distance
between the positions is calculated. This is repeated for each of the points initially seeded in
the tumbler system and the median of these averages is calculated. Sets of positions from the
20 iterations corresponding to each initial point are plotted only if the average distance
between the positions is smaller than some threshold, in this case, smaller than half of the
median of the average distances between points for all of the initial conditions. Upper right:
Points that are trapped in tube-like regions around the ‘elliptic’ point curve in x ¼ �z plane.
Lower right: Points reveal hyperbolic behaviour in the x¼ z plane. In the model used to
generate these results _� ¼ 200j!j.
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uy, l ¼ �
!zxy

�ðx, zÞ
þ 4

Dcoll

dp

mh �ml

mh

� �
fþ ky: ð37Þ

These equations are similar to those for 2d segregation, except that the instantaneous
streamwise and transverse coordinates are used along with the rotation rate about
the instantaneous axis of rotation, !z ¼ �j!j. In addition, the flowing layer thickness
is a function of both x and z. The terms kx and ky are white noise terms that represent
diffusion in the streamwise direction x and the upward normal direction y.

Initial condition

1 period

2 periods

3 periods

4 periods

Simulation
without

Simulation
with

Experiment

Figure 32. Comparison of a simulation using 3d continuum model without and with diffu-
sion and an experiment. These figures were generated using the two-axis protocol WU where
the rotation on each axis is one revolution. By tuning the shear rate in the model to match the
experiment ( _� ¼ 50j!j), the continuum model simulation captures the patterns observed
experimentally. In both the simulation and experiment, fluorescent yellow (appear as green
in the figure) coloured particles are seeded in a blob at the bottom of a half-full spherical
tumbler. In all cases, the spherical tumbler is viewed from the bottom. The first column
illustrates the evolution of the pattern over four periods of the two-axis protocol using the
continuum model without diffusion. The second column illustrates the evolution of the pattern
over four periods of the two-axis protocol using the continuum model with diffusion in the
flowing layer in both the x and z directions. The third column shows the experimental result of
a half-full sphere (diameter of 136mm) containing 1:07� 0:04mm black basalt glass particles
and 1:94� 0:11mm fluorescent yellow painted glass particles. The rotation rate is 2:0 RPM.
Segregation effects keep the larger tracer particles near the tumbler walls and away from the
interior of the bed. Thus, size differences negate diffusive motion of particles between hemi-
spheres to capture the dynamics restricted to hemispheres, as shown in figure 30. See online
version for colour.

808 S. W. Meier et al.



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

Since there is the possibility for diffusion along the transverse direction, an additional
equation is included

uz, h ¼ uz, l ¼ kz ð38Þ

where kz is a white noise term related to collisional diffusivity in the transverse
direction analagous to kx and ky. Typically, diffusion in the transverse direction
can be taken to be the same order of magnitude as the diffusion in the streamwise
direction. Experimental measurements using particle tracking velocimetry indicate
that fluctuations about the mean velocity in the surface flow in 3d tumblers are
similar in both the streamwise and transverse directions [175]. Analogous equations
for action W would interchange the roles of x and z in equations (35)–(38).

6.6.1. Two-axis spherical tumbler. The two-axis protocol serves as an example to
demonstrate the application of the segregation model to a 3d system. Consider a
half-full spherical tumbler with a ratio of tumbler diameter to particle diameter of
100 that contains 3:2� 104 points representing heavy particles randomly seeded
throughout the lower half of the tumbler as the initial condition. These particles
were then advected according to equations (35)–(38). Light particles were not
included in the simulation, and f was calculated using the bitwise operator method
described in section 4.3.

For rotation about one axis, in this case, the z-axis (action U), the particles
segregate into a core illustrated in figure 33(a). The core is largest at the centre of
the sphere where the cross-sectional radius in the direction of flow is the largest. The
core that forms after eight periods of the two-axis motion M ¼WU has different
symmetries than for one-axis motion as shown in figure 33(b). It is symmetric about
the x¼ z plane, although it is still roughly a radial core in terms of its general
features.

6.6.2. Two-axis cubical tumbler. The two-axis cubical tumbler is more complicated
than the spherical tumbler. (A detailed analysis of the underlying dynamics for a
two-axis cubical tumbler is presented in Appendix B.) Recall that while in the 2d
case, a circular tumbler results in a radial core of segregated small or dense particles
(figure 18(b)), a square tumbler results in a core with two lobes that stretch along the
diagonals (figure 18(d)). Likewise, in three dimensions, the two-axis cubical tumbler
results in a more complicated segregation pattern.

In this case, 6:0� 104 points representing heavy particles were initially seeded
uniformly throughout the lower half of the cubical tumbler. After applying eight
periods of the protocol M ¼WU, the heavy particles segregate into a three-lobed
pattern, as shown in figure 34(a). These results can be compared with segregation
experiments using a S2-DGSs (dry) and a S2-LGSs (liquid). As shown in figure 34,
the computations and experiments agree in many respects. In all cases, three lobes
are observed. There are two lobes in the positive z half-space, one above the z-axis
and one below, and a single lobe in the negative z half-space of the cubical tumbler.
Furthermore, in both the model and the experiments, a ‘hole’ containing fewer
particles than the lobes is observed between the three lobes. Thus, the segregation
model qualitatively predicts the nature of the segregation pattern.

The segregation pattern is produced by two effects. First, the particles segregate
in the flowing layer with the small or dense particles sinking to the bottom portion

Mixing and segregation of granular materials in tumblers 809
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of the layer. Second, the flowing layer length and thickness change with the
rotational orientation of the tumbler geometry. The flow in the layer is thus
time periodic owing to the time periodicity of the rotational orientation. These
time periodic dynamics drive the shape of the unstable manifolds (described in
Appendix B), which trace out different regions of the flow, one of which corre-
sponds to the segregation pattern. The overlay of the unstable manifold after over
20 periods of the flow with the corresponding computational segregation pattern is
shown in figure 35. Thus, the continuum model can be used to predict the segrega-
tion pattern by means of unstable manifold tracing even though the continuum
model contains no information about particle properties or their tendency to
segregate.

7. Concluding remarks

7.1. Summary of elements

In this article we have presented a dynamical systems approach for mixing and
segregation of polydisperse granular materials in rotating tumblers. Tumbler geome-
try and rotational protocol combinations are seemingly limitless and, until recently,
there has been no unified framework for studying how these parameters affect mixing
and segregation. While the flow of granular materials in rotating tumblers can
appear to be quite complicated owing to the nature of time-periodic forcing,
non-circular tumbler geometry and multiple axes of rotation, there is one point of
simplification. To a good approximation, all of the dynamics occur in a thin, rapidly
flowing surface layer. With an understanding of the flow in this layer, the dynamics
of the entire system can be studied. While the continuum model was originally
developed for 2d and 2dþT systems, it can be adapted to 3d and 3dþT systems

Sphere rotated on according to U Sphere rotated according to WU

(a) (b)

x

z

x

z

Figure 33. Example of the 3d segregation model applied to a spherical tumbler. Both figures
are of the bottom view with the y-axis pointing into the page. (a) Segregation pattern of
3:2� 104 points representing dense particles after four revolutions on the z-axis (eight periods
of U where the time period is one-half revolution). (b) Segregation pattern of 3:2� 104 points
representing dense particles after four periods of the protocol M ¼WU. In the model used to
generate these results _� ¼ 200j!j. The ratio of the spherical tumbler diameter to a particle
diameter is set to 100=1.
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(b) S-DGS
x

z

(c) S-LGS
x

z

(a) D-system simulation
x

z

Figure 34. Comparison of simulation and experiments for segregation in a two-axis cubical
tumbler. (a) Bottom view of D-system simulation of 6:0� 104 points representing heavy
particles after eight periods of the two-axis protocol. Here _� ¼ 200j!j. The ratio of the
cube side length ratio to the diameter of a particle is set to 100=1. (b) Bottom view of the
S2-DGS experiment. (c) Bottom view of the S2-LGS experiment. In (b) and (c), the cube has a
side length of 100mm. The cube is half filled with a 25% by volume small particle mixture. The
experiments were run for several periods (20 or more, although a steady-state pattern devel-
oped within 8–10 periods). In both the S2-DGS and S2-LGS experiments, the small particles
are 1:13� 0:07mm painted fluorescent yellow (appears green under UV light) glass particles
(bulk density 2:2 g cm�3). The large particles are 3:03� 0:11mm clear glass particles (bulk
density 2:4 g cm�3). The S2-DGS experiment requires a larger concentration of small particles
than that for the simulation, because the opacity of the granular material prevents the segre-
gation pattern in the bed with a smaller concentration of small particles from being viewed. In
the case of the S2-LGS experiment, a 67% by weight sodium iodide solution is used to match
the index of refraction of the large clear glass particles allowing a deeper view into the bed.
See online version for colour.

0

−0.25

−0.5
−0.5

−0.5

−0.25

−0.25
0.25

0.25

0.5

0.5

0

0

y

z

x

Figure 35. Overlay of unstable manifold tracing over 20 periods (shown in blue) with the
segregation pattern from the computational model after eight periods (green spheres). Both
results generated using _� ¼ 200j!j. See online version for colour.
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by considering the flow in individual cross-sectional slices [175] as shown in
figure 25(a). From this viewpoint, 3d flows are made up of slices of 2d flows.
Thus, the tools and techniques developed for 2d systems, such as the constitutive
equations for segregation, can be applied to 3d systems.

In 2dþT systems, the underlying dynamics as revealed through computational

Poincaré sections can be related to segregation patterns through the hyperbolic

points and their corresponding unstable manifolds [182]. This insight provides a

template for studying the relationship between the underlying dynamics of flow in

3dþT flows and the resulting segregation patterns observed through both constitu-

tive segregation modelling and experiments. While in 2dþT systems locating peri-

odic points is relatively straightforward, the dynamics are considerably more

complicated in 3dþT systems. The symmetries technique provides a method for

identifying regions of interest of the underlying dynamics of the flow. By identifying

how periodic points are arranged in the flow, we can expect to find corresponding

regions of good and poor mixing as characterized by ‘hyperbolic’ points and ‘elliptic’

points. By numerically calculating the properties of the periodic points, regions

of interest such as unstable manifolds can be located and related to segregation

patterns.

7.2. Outlook

Granular materials display a remarkable range of behaviours. The review presented
in the previous pages focuses on a thin slice: that of mixtures of granular materials
placed in containers that mix and or segregate when acted on by a series of rotational
motions. More specifically, the coverage is restricted to systems that operate when
the surface flow is in the rolling regime and when particles are non-cohesive. It could
be argued that such a set of physical systems and operational conditions is small and
that the accompanying theory is narrow, in the sense that the framework cannot
easily be extended to other physical situations.

Such a view may be naive and an analogy with classical fluid mechanics may be

instructive. Let us state first that a complete solution of the Navier–Stokes equations

is only possible in limited circumstances. This is true in the case of a single fluid and

is manifestly clear in the case of two fluids where the number of problems amenable

to analytical study is small. It is now regarded as natural that fluid mechanics

evolved into branches, each corresponding to a set of approximations: potential

flow for flow away from boundaries, where viscous terms are dropped altogether;

boundary layer flow; inertia-less flow for vanishingly small Reynolds numbers when

one is dealing with very viscous fluids or systems at small scales, and so on. Then we

have the branches of fluid mechanics: lubrication theory, wave analysis in shallow

waters and many more. It is trivial to find conditions where each of these descriptions

breaks down.
There is, however, little doubt about the value and content of such descriptions

and indeed there are many books written about the subtleties, consequences and

insights embodied in each of these approximations. It is up to the user to determine

the circumstances under which each theory may or may not be applied to the specific

problem at hand.
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A similar situation occurs here. We have a self-contained description of mixing in
2d and 3d containers acted on by means of a series of rotational motions. The central
tenet of the framework is the recognition that the bulk of the granular flow in a
rotated container is in solid body rotation and that the essential aspects of the sur-
face flow are, in general terms, independent of the geometry of the container. The
model assumes that the surface flow adjusts instantly so the streamwise direction of
the flow is orthogonal to the instantaneous axis of rotation. The framework works if
the flow surface, at any time in the history of the flow, is convex. This means that the
set of all points containing all line segments between each pair of points at the
perimeter of the flow surface lie within the flow surface itself. However, there may
be cases where the framework applies even if the flow surface is not convex. What is
needed is that during the flow history, the particle’s flow path between the starting
wall and the ending wall is uninterrupted by intrusions. Thus, a given container may
be analysable in terms of the present framework depending on the nature of the
forcing.

The framework based on these key experimental observations applies to both
LGSs and DGSs when the particles differ in size and density only moderately. This
corresponds to the physical situation where the flow affects segregation, but segrega-
tion does not affect flow to any significant extent. The body of evidence, based on
computational results to date, is that under this set of conditions, the results (such as
the location of regular and chaotic regions or the final segregation patterns) are
relatively insensitive to details such as the exact shape of the flow region, etc.

Several improvements are possible and many areas of possible investigation
can be identified. However, there are also conditions that fall clearly outside this
framework. We discuss these issues below.

Under the category of improvements, from simple to complex, we may list the
conditions leading to the relaxing of the need for convex flow surfaces, improvements
in the constitutive relations for segregation and conditions under which we can add
some degree of coupling between segregation and flow. As developed, the theory and
framework assume that the flow affects segregation, but segregation does not affect
flow. Particles of varying density flow in the streamwise direction as if they were
monodisperse according to equation (5). However, they segregate in the normal
direction based on an equation that treats the two particle types as interpenetrating
continua that separate based on density. As such, improvements are in the spirit of
adding inertia to the viscous flow solution around a sphere in classical fluid
mechanics.

The complexities embodied in the flow of granular matter in 3d containers can be
glimpsed by looking at limit cases. Even when reducing the problem to an extreme
level of idealization, the mathematical problems are anything but simple. One such
case is the flow in 3d containers, such as a sphere, when the flow region becomes
infinitely thin and the speed infinitely fast [214]. This brings up only issues associated
with the geometry and the nature of the trajectories in what essentially is a map of
the sphere onto itself. The mathematics associated with such transformations raise
several open questions at the present time. In fact, only recently have there been
applications of results associated with linked twist maps [215] to fluid flows; the same
machinery is applicable to granular flows [214]. The extension of these tools to three
dimensions is far from trivial although it is tempting to refer to the flows of figures 27

Mixing and segregation of granular materials in tumblers 813
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and 39 as generalized linked twist maps [216]. Studies along this line of thinking may

yield insight into complex issues arising with the geometry and shape of invariant

cores for tumblers that are more than half full.
More work can be done with continuous protocols such as the rocking/

rotating protocol [147]. Symmetry analyses have been applied to continuous flows,

not just discrete flows [217]. Everything that has been done here for the

discrete 3dþT systems such as the two-axis protocol can be applied to a continuous

system.
There are also issues that have to do with the mathematical formulation of the

problem itself. Consider equations (35)–(37) for segregation in three dimensions. The

system is, qualitatively, dissipative and, as such, one could think in terms of attrac-

tors and even possible theorems that would indicate when such attractors may exist.

This may yield insight into two kinds of problems and the end results they lead to:

those starting from a mixed state and leading to unmixed state; and those starting

from an unmixed state and leading, in general, to a partially mixed system coexisting

with unmixed structures.
One should also note the physical issues that, at the moment, fall outside the

framework. SD-systems, the most common in applications, represent a challenge and

there are significant difficulties in dealing with these systems. In bidisperse S- or

D-systems in a quasi-2d tumbler, materials of smaller size or higher density tend

to radially segregate toward the centre of the granular bed, while materials of larger

size or lower density tend to segregate at the outer edges of the granular bed. Of

course, it seems logical that if the mixture consists of small–heavy particles and

large–light beads, the smaller particles will sink to lower levels in the flowing layer

ending up in the segregated core because of the combined effects of both percolation

and buoyancy. One would expect that in this case, the rate at which segregation

occurs and/or the extent of final segregation would be greater than the cases when

only size or density of the particles drives the segregation. Conversely, for large–

heavy particles and small–light particles, one might expect that segregation could be

minimized or even eliminated altogether because the percolation and buoyancy

mechanisms oppose one another. However, the actual situation is much richer

than this simple analysis suggests [66, 67]. In fact, a variety of segregation patterns

can occur when buoyancy and percolation act together. In some cases, the standard

semicircular segregation pattern occurs, but in other cases a streaked pattern results.

On the other hand, either mixing or segregation can occur when buoyancy and

percolation oppose one another.
Another physical issue is coarsening. Coarsening occurs in 2dþ 1 systems

(figure 10(b)), but recent experiments indicate that coarsening occurs in 2d systems

as well (figure 36); radial streaks, such as those in figure 9(b), coarsen [218]. As shown

in figure 36, four radial streaks form from an initially homogeneous 40% by volume

mixture of 0:35mm small painted black glass particles and 1:11mm clear glass

particles after 10 tumbler revolutions. The four streaks gradually coarsen to just

one streak over the next 180 tumbler revolutions.
The physical situations covered by the present theory and framework are admit-

tedly restricted. It is apparent that there are many open issues. Yet further theoretical

and experimental work may open the mixing arts to rigorous analysis.

814 S. W. Meier et al.
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Appendix A: Symmetry concepts for 3d granular flows

The algebra of symmetries technique used in section 6 is based on the concepts
outlined for fluid systems by Franjione and Ottino [191]. The analysis based on
this technique reveals the arrangement of period-1 points in figure 29 and is described
in appendix.

A1. Definitions

In this section we collect a few definitions before going into applications. An action is
the consequence of a motion of the tumbler that causes the granular material to flow.
Examples of actions are the operations U and W described earlier: U is one-half
rotation of the tumbler about the z-axis where material flows in the layer in the x
direction;W is one-half rotation of the tumbler about the x-axis where material flows
in the layer in the z direction.

A rotation is a reorientation of the tumbler with respect to the axes ðx, y, zÞ that

does not result in flow. Viewing the tumbler from the top, R is one-quarter rotation

about the y-axis in the clockwise direction. Thus, a point in the tumbler

initially located at coordinate position ðx, y, zÞ is relocated to position ð�z, y,xÞ

upon action R.
A reflection is a transformation about some plane in three dimensions (or line in

two dimensions). The reflection about the z¼ 0 plane, Sz¼0, for a point ðx, y, zÞ

reflects that point to ðx, y, � zÞ. The subscript on S simply labels the symmetry for

bookkeeping. When a superscript is attached, this superscript is the number of times

that the action, reflection or rotation is applied. For example, two applications of the

Initial condition 10 revolutions 50 revolutions 90 revolutions 190 revolutions

Figure 36. Example of radial streak coarsening. An initially homogeneous mixture of small
0:35 mm painted black glass particles and large 1:11 clear glass particles in a 55%-full quasi-2d
circular tumbler quickly forms a radial streak pattern within 10 tumbler revolutions. The four
radial streaks coarsen to just one streak over the next 180 tumbler revolutions. The tumbler is
made of acrylic. The tumbler diameter is 200mm and the thickness is 6mm.

Mixing and segregation of granular materials in tumblers 815
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reflection about the z¼ 0 plane is expressed since S2
z¼0. As S2

z¼0 ¼ 1, this is referred to

as an involution.

A2. Application example

The two-axis protocol, shown in figure 27 for a spherical tumbler and figure B1 for
a cubical tumbler, can be represented by successive applications of the action
M ¼WU. The key to uncovering symmetries is to unravel the relationship between
U and W. The treatment here follows that of Franjione and Ottino [191]. The flows
due to U and W are rotationally symmetric to each other with rotations of �p=2
radians about the y-axis for both the spherical tumbler and the cubical tumbler.
Thus, the result achieved by action W can be achieved by a counterclockwise rota-
tion (R�1), followed by action U, followed by a clockwise rotation R. In terms of
map algebra,

W ¼ RUR
�1: ðA1Þ

Here U and W are also related to their inverses by means of a different rotational
symmetry (a rotation of p radians), R2, about the y-axis. In the case of U, this is

U ¼ R
2
U
�1
R

2: ðA2Þ

Thus, action U can be achieved by rotating the tumbler clockwise p radians about
the y-axis, applying U in the reverse direction and then rotating the tumbler again
clockwise p radians back to its original configuration.

Both actions U and W also have reflectional symmetry. Action U is symmetric

to itself with respect to reflections across the z¼ 0 plane. This symmetry can be

expressed as

U ¼ Sz¼0USz¼0: ðA3Þ

Here W has a similar reflectional symmetry across the x¼ 0 plane.
The above relationships give insight into the overall map, M. Inserting the

rotational symmetry given by equation (A1) into M ¼WU, gives

M ¼ RUR
�1
U: ðA4Þ

Then using the reflectional symmetry from equation (A3) results in

M ¼ RSz¼0USz¼0R
�1
U: ðA5Þ

Now consider the meaning of the transformations RSz¼0 and Sz¼0R
�1 by taking the

point located at ðx, y, zÞ:

ðx, y, zÞ �!
Sz¼0
ðx, y, � zÞ�!

R
ðz, y, xÞ

and

ðx, y, zÞ �!
R
�1

ðz, y, � xÞ �!
Sz¼0
ðz, y,xÞ:

Thus, RSz¼0 ¼ Sz¼0R
�1. This suggests a new symmetry,

S1 ¼ RSz¼0 ¼ Sz¼0R
�1: ðA6Þ
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Since S1 is the transformation ðx, y, zÞ ! ðz, y, xÞ, it represents a symmetry across the
x¼ z plane. Equation (A5) can now be expressed as

M ¼ S1US1U: ðA7Þ

Thus, the overall map, M, is the second iteration of a fundamental map (M ¼M
2
f ),

where

Mf ¼ S1U: ðA8Þ

Now inserting equation (A2) into equation (A8):

Mf ¼ S1R
2
U
�1
R

2: ðA9Þ

Since S1 is an involution (S2
1 ¼ 1), it can be inserted into equation (A9) to get

Mf ¼ S1R
2
½U
�1
S1�S1R

2: ðA10Þ

The term in brackets in equation (A10) is the inverse of the fundamental map, Mf.
Further, S1R

2 is a new symmetry:

ðx, y, zÞ �!
R

2

ð�x, y, � zÞ �!
S1
ð�z, y, � xÞ:

This new symmetry S2 represents a reflection across the x ¼ �z plane, shown in
figure A1. Using S2, equation (A10) becomes

Mf ¼ S2M
�1
f S2: ðA11Þ

Thus, the fundamental map Mf is symmetric to its inverse with respect to reflections
across the x ¼ �z plane. This is referred to as a time-reversal symmetry [191]: M�1f is
the inverse of Mf, which is equivalent to applying the action in reverse (backwards in
time). This means that all period-1 points (those that return to their initial position
after one iteration ofM ¼WU) lie in this plane or in symmetric pairs reflected across
it. This is a crucial insight that increases the efficiency of locating periodic points.

A3. Other symmetries

The above treatment can be generalized. There are many possibilities of different
flows using two axes of rotation that involve protocols other than the repeating
iterations of WU, which, noting the rotational symmetries of U and W, can be
expressed as RUR

�1
U. In all, it can be shown that there are 16 different protocols

that have repeating units Ra
U

b
R

c
U

d, where a, b, c, d can have values of �1. Using the
symmetries analysis technique, these 16 flows can be separated into two families as
shown in figure A2. Further details are provided by Franjione and Ottino [191].

The members of each family are related by rotational and reflectional symme-

tries. One of these families is the set of flows that all have a fundamental map,

Mf ¼ RSz¼0U, which has a time-reversal symmetry about the x ¼ �z plane. This

means that the period-1 points in the system will be symmetric with respect to the

x ¼ �z plane. The members of the other family all have a different fundamental

map, Mf ¼ RU, which has another time-reversal symmetry.
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Appendix B: Application example with a cubical tumbler

The procedure described for a spherical tumbler in section 6 can be applied to a half-
full cubical tumbler rotated by the M ¼WU protocol about axes through its faces,
shown in figure B1. In this case, each cross-sectional slice for the flow is a square.
The symmetries analysis is independent of tumbler geometry, since the general
characteristics of the underlying flow are similar in both the spherical and cubical
tumblers.

B1. Skeleton of 3d flow in a cubical tumbler

The position of period-1 points for the two-axis cubical tumbler can be found using
the same methodology as used for the two-axis spherical tumbler, described in
section 6.3. The resulting period-1 points are symmetric about the x ¼ �z plane, as
shown in figure B2. The transition along the curve of period-1 points with a ‘hyper-
bolic’ character (green) to those with an ‘elliptic’ character (blue) is continuous,
not abrupt. (Here, one period is one iteration of the map, M.) Thus, moving along
one of the curves, the transition of the imaginary part of the eigenvalue to zero is
gradual. As predicted from the symmetry analysis, the period-1 points are symmetric
about the x ¼ �z plane (the two individual points) or lie in the x ¼ �z plane (the five
curves).

The two points in figure B2 that form a symmetric pair reflected across from

each other across the x ¼ �z plane are related by the time-reversal symmetry.

The period-1 point in the negative x, negative z corner in figure B2 has an eigenvalue

that is real and greater than one (corresponding to a direction of stretching) and two

eigenvalues that are complex conjugates. The other period-1 point has an eigenvalue

that is real and less than one (corresponding to a direction of compression) and two

x

y

z

Figure A1. Illustration of the reflectional symmetry S2 of the fundamental map, Mf, in a
spherical tumbler.
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eigenvalues that are complex conjugates. If the two-axis protocol were run back-
wards (first W backwards followed by U backwards, M

�1
¼ U

�1
W
�1), then the

stretching and compression characteristics of the two period-1 points for the two-
axis protocol would be reversed, consistent with a time-reversal symmetry about the
x ¼ �z plane. That is, what happens on one side of the plane of symmetry according
to M ¼WU will happen on the other side of the plane of symmetry according to
M
�1
¼ U

�1
W
�1.

The curves of period-1 points in figure B2 are not symmetric with respect to the
x¼ z plane. The only restriction on the location of the period-1 points according to
the symmetries analysis is that they be symmetric with respect to the x ¼ �z plane.

RURU

R U R U
−1 −1 −1

RURU
−1

R U R U
−1 −1 −1 −1

RU RU
−1

R UR U
−1 −1

R URU
−1

RU R U
−1 −1

R URU
−1 −1

RU R U
−1 −1 −1

R U RU
−1 −1 −1

RUR U
−1 −1

R U RU
−1 −1

RUR U
−1

RURU

R U R U
−1 −1 −1 −1

RU RU
−1 −1

R UR U
−1 −1 −1

RU RU
−1 −1

R UR U
−1 −1

R URU
−1

RU R U
−1 −1 −1

R U RU
−1 −1 −1

RUR U
−1

R UR U
−1 −1

RURU R URU
−1

RUR U
-1

RURU

RUR U
−1

M =RU
f

f
M =RS  U

z=0

U−1=R2UR2 U =R UR
−1 2 2

M=WU

Fundamental
Maps

Figure A2. The 16 possible two-axis protocols Ra
U

b
R

c
U

d (where a, b, c and d can be �1) can
be separated into two families. The family of protocols in the right-most column has the
fundamental map Mf ¼ RSz¼0U at the centre of the figure. Note that M ¼WU is in this
family, as noted at the bottom of the right-hand side. The family of protocols in the left-
most column has the fundamental map Mf ¼ RU noted at the centre of the figure. Labels at
the top of each column indicate the symmetry relationship between pairs of protocols in that
column that permit a pair of protocols to be represented by a single protocol in the next
column towards the centre of the figure. For example, consider the pair of protocols at the top
of the right column. The protocol R�1URU is identical to the protocol below it, RU�1R�1U,
by using the R2 rotational symmetry of U and U

�1, (U�1 ¼ R
2
UR

2). Thus, either one can be
represented by R

�1
URU at the top of the second column from the right. This protocol is

related to the protocol immediately below it in the second column, RU�1R�1U�1, by a reflec-
tion across the x¼ 0 plane (as indicated at the top of the second column from the right).
Continuing on to the third column from the right, these two protocols, R

�1
URU and

RUR
�1
U, are related by a reflection across the z¼ 0 plane. This leads to the fundamental

map Mf ¼ RSz¼0U, which indicates time-reversal symmetry about the x ¼ �z plane.
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By applying the flow protocol UW rather than M ¼WU, the x¼ z asymmetry of the
curves of points is reflected about the x¼ z plane. The x ¼ �z symmetry is retained
owing to the rotational symmetry relationship between U and W (equation (A1)).
UW is equivalent to URUR

�1, which is the inverse of RU�1R�1U�1 and part of the
family of protocols that has a time-reversal symmetry about the x ¼ �z plane in
figure A2.

UW

y

xz

t t
W

x

z

U

x

z

U W

T

Flow in each cross-section is independent

x z

Figure B1. Rotation of a cubical tumbler at its faces on two independent axes of rotation:
U results in flow in the layer in the positive x direction; W results in flow in the layer in the
positive z direction. Flow in each cross section orthogonal to the axis of rotation is propor-
tional to cross-sectional geometry.

zx

y

0

−0.25

−0.5

−0.2500.250.5

−0.5 −0.25 0 0.25 0.5

λ =0.275
λ =0.823+1.72i
λ =0.823−1.72i

1

3

2

3

2

λ =3.63
λ =0.227+0.473i
λ =0.227−0.473i

1

x=-z
x=z

Figure B2. Location of period-1 points for a half-full cubical tumbler with a side length of
one rotated by the mapping M ¼WU. In the model used to generate these results _� ¼ 200j!j.
Hyperbolic points are represented by green spheres. Elliptic points are represented by blue
spheres. See online version for colour.
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In the case of the cubical tumbler, the visualization technique in figure 31 can be
applied, as shown in figure B3. In this case, points that are trapped are isolated in
tube-like regions around the elliptic portions of the curves in the x ¼ �z plane. Other
points that explore larger regions of the domain of the flow are not shown. Viewing
along the x ¼ �z plane in the upper right portion of figure B3, the reflectional

Initial Condition

Elliptic tubes in x=−z plane

y

z x

y

y

x

xz

z

0

−0.25

−0.5
−0.5

−0.25
0

0.25
0.5 −0.5

−0.25
0

0.25
0.5

0

−0.25

−0.5
0.5

0.25
0

−0.25
−0.5−0.5

−0.25
0

0.25
0.5

Figure B3. Points trapped in a region near their initial condition are plotted after 20 periods
of M for the cubical tumbler. Left: Initial condition. Right: Points are trapped near the elliptic
portion of the curve of period-1 points, as shown from two viewpoints. In the model used to
generate these results _� ¼ 200j!j.

y

x

zz

0

−0.25

−0.5
−0.5 −0.5−0.25

−0.25

0.5

0.5

0.25

0.25

0

0

Figure B4. Unstable manifold trace from the period-1 point in the negative x, negative z
corner after 12 periods as observed from two different viewpoints. 104 points were seeded at
the surface of a small sphere of radius 0:01L surrounding the period-1 point, where L is half of
the side length of the cube. In the model used to generate these results _� ¼ 200j!j.

Mixing and segregation of granular materials in tumblers 821



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

symmetry across the x ¼ �z plane is evident. This agrees with the symmetries
analysis technique that suggests that period-1 points should lie in the x ¼ �z
plane or in pairs reflected across it.

B2. Unstable manifold tracing

Visualization of the dynamics of 2dþT flows is relatively straightforward. Elliptic
points are surrounded by KAM surfaces, creating invariant regions of flow whereas
hyperbolic points have associated stable and unstable manifolds [182]. The 3dþT
case is conceptually similar, but visualization and identification of the flow structures
is considerably harder. After one period of flow for a cubical tumbler rotated on two
axes, a small sphere of points seeded in the flow near one of the isolated period-1
points stretches and deforms to form an ellipsoid. After three periods, points begin to
curve away from the elliptic point and stretch in the x¼ z direction. After just 12
periods of flow, the stretching and folding leads to the typical unstable manifold pile-
up as it approaches the stable manifolds of the curve of period-1 points in the x ¼ �z
plane, as shown in figure B4.

Over 20 periods of flow, the series of points quickly lose connectivity, an una-
voidable situation in chaotic flows [219]. However, they trace out a pattern in the
phase space that corresponds to the shape of the segregation pattern suggested in
figure 34, as shown in figure 35. While the period-1 points are symmetric with respect
to the x ¼ �z plane as predicted by the time-reversal symmetry of Mf, the unstable
manifold trace travels from the isolated period-1 point in the negative x negative z
corner towards the curve of period-1 points in the x¼ z direction. As it continues, the
unstable manifold traces out the boundary where segregated particles are found in
the bed including all three lobes that are evident in the segregation pattern of
figure 34. This is similar to the result observed for unstable manifold tracing in
2dþT flows [182] shown in figure 21(d).
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pp. 163.

822 S. W. Meier et al.



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

[15] J.A. Drahun and J. Bridgwater, Powder Technol. 36 39 (1983).
[16] A. Rosato, K.J. Strandburg, F. Prinz and R.H. Swendsen, Phys. Rev. Lett. 58 1038

(1987).
[17] J.B. Knight, H.M. Jaeger and S.R. Nagel, Phys. Rev. Lett. 70 3728 (1993).
[18] D.V. Khakhar, J.J. McCarthy and J.M. Ottino, Phys. Fluids 9 3600 (1997).
[19] K.M. Hill, D.V. Khakhar, J.F. Gilchrist, J.J. McCarthy and J.M. Ottino, Proc. Natl.

Acad. Sci. USA 96 11701 (1999).
[20] J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular

Materials, Partially Ordered Systems (Springer, New York, 2000).
[21] J.M. Ottino and D.V. Khakhar, Annu. Rev. Fluid Mech. 32 55 (2000).
[22] G.H. Ristow, Pattern Formation in Granular Materials, Springer Tracts in Modern

Physics, Vol. 164 (Springer, Berlin, 2000).
[23] M.E. Mobius, B.E. Lauderdale, S.R. Nagel and H.M. Jaeger, Nature 414 270 (2001).
[24] A.P.J. Breu, H.M. Ensner, C.A. Kruelle and I. Rehberg, Phys. Rev. Lett. 90 014302

(2003).
[25] L. Trujillo, M. Alam and H.J. Herrmann, Europhys. Lett. 64 190 (2003).
[26] L. Trujillo and H.J. Herrmann, Granul. Matter 5 85 (2003).
[27] L. Trujillo and H.J. Herrmann, Physica A 330 519 (2003).
[28] T. Shinbrot and F.J. Muzzio, Phys. Rev. Lett. 81 4365 (1998).
[29] T. Shinbrot, Nature 429 352 (2004).
[30] D. Helbing, Rev. Mod. Phys. 73 1067 (2001).
[31] S.B. Savage, Adv. Appl. Mech. 24 289 (1984).
[32] S. Herminghaus, Adv. Phys. 54 221 (2005).
[33] R. Jackson, Some mathematical and physical aspects of continuum models for the motion

of granular materials, in Theory of Dispersed Multiphase Flow, edited by R. Meyer
(Academic Press, New York, 1983), pp. 291.

[34] C.H. Rycroft, G.S. Grest, J.W. Landry and M.Z. Bazant, Phys. Rev. E 74 021306 (2006).
[35] H.A. Janssen, Z. Ver. Dtsch. Ing. 39 1045 (1895).
[36] M. Sperl, Granul. Matter 8 59 (2006).
[37] C.S. Campbell, Powder Technol. 162 208 (2006).
[38] C.S. Campbell, Annu. Rev. Fluid Mech. 22 57 (1990).
[39] I. Goldhirsch, Annu. Rev. Fluid Mech. 35 267 (2003).
[40] G.K. Batchelor, An Introduction to Fluid Dynamics, 1st Cambridge Mathematical Library

edition (Cambridge University Press, Cambridge, 2000).
[41] L.D. Landau and E.M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon Press, Oxford,

1987).
[42] W.M. Deen, Analysis of Transport Phenomena (Oxford University Press, New York,

1998).
[43] J. Gollub, Phys. Today 56 10 (2003).
[44] P.K. Haff, J. Fluid Mech. 134 401 (1983).
[45] J.T. Jenkins, Rapid flows of granular materials, in Non-classical Continuum Mechanics,

edited by R.J. Knops and A.A. Lacey, London Mathematical Society Lecture Note Series
(Cambridge University Press, Cambridge, 1987), pp. 213.

[46] S. Ogawa, Multitemperature theory of granular materials, in Proceedings of the U.S.–
Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of
Granular Materials, edited by S.C. Cowin and M. Satake (Gakujutsu Bunken Fukyukai,
Tokyo, Japan, 1978), pp. 208.

[47] S.B. Savage, Granular flows at high shear rates, in Theory of Dispersed Multiphase Flow,
edited by R. Meyer (Academic Press, New York, 1982), pp. 339.

[48] R.A. Bagnold, Proc. R. Soc. London, Ser. A 225 49 (1954).
[49] M.L. Hunt, R. Zenit, C.S. Campbell and C.E. Brennen, J. Fluid Mech. 452 1 (2002).
[50] P.C. Johnson and R. Jackson, J. Fluid Mech. 176 67 (1987).
[51] P. Jop, Y. Forterre and O. Pouliquen, Nature 441 727 (2006).
[52] P. Mills, D. Loggia and M. Tixier, Europhys. Lett. 45 733 (1999).
[53] L. Bocquet, W. Losert, D. Schalk, T.C. Lubensky and J.P. Gollub, Phys. Rev. E 65

011307 (2002).

Mixing and segregation of granular materials in tumblers 823



D
ow

nl
oa

de
d 

B
y:

 [N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] A
t: 

17
:4

0 
15

 O
ct

ob
er

 2
00

7 

[54] W. Losert, L. Bocquet, T.C. Lubensky and J.P. Gollub, Phys. Rev. Lett. 85 1428 (2000).
[55] P. Jop, Y. Forterre and O. Pouliquen, J. Fluid Mech. 541 167 (2005).
[56] J.P. Bouchaud, M.E. Cates, J.R. Prakash and S.F. Edwards, J. Phys. I 4 1383 (1994).
[57] J.P. Bouchaud, M.E. Cates, J.R. Prakash and S.F. Edwards, Phys. Rev. Lett. 74 1982

(1995).
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